Metamath Proof Explorer


Theorem sin2h

Description: Half-angle rule for sine. (Contributed by Brendan Leahy, 3-Aug-2018)

Ref Expression
Assertion sin2h A02πsinA2=1cosA2

Proof

Step Hyp Ref Expression
1 0re 0
2 2re 2
3 pire π
4 2 3 remulcli 2π
5 iccssre 02π02π
6 1 4 5 mp2an 02π
7 6 sseli A02πA
8 7 rehalfcld A02πA2
9 8 resincld A02πsinA2
10 1re 1
11 recoscl AcosA
12 resubcl 1cosA1cosA
13 10 11 12 sylancr A1cosA
14 13 rehalfcld A1cosA2
15 cosbnd A1cosAcosA1
16 15 simprd AcosA1
17 subge0 1cosA01cosAcosA1
18 10 11 17 sylancr A01cosAcosA1
19 halfnneg2 1cosA01cosA01cosA2
20 13 19 syl A01cosA01cosA2
21 18 20 bitr3d AcosA101cosA2
22 16 21 mpbid A01cosA2
23 14 22 resqrtcld A1cosA2
24 7 23 syl A02π1cosA2
25 1 4 elicc2i A02πA0AA2π
26 halfnneg2 A0A0A2
27 2pos 0<2
28 2 27 pm3.2i 20<2
29 ledivmul Aπ20<2A2πA2π
30 3 28 29 mp3an23 AA2πA2π
31 30 bicomd AA2πA2π
32 26 31 anbi12d A0AA2π0A2A2π
33 rehalfcl AA2
34 33 rexrd AA2*
35 0xr 0*
36 3 rexri π*
37 elicc4 0*π*A2*A20π0A2A2π
38 35 36 37 mp3an12 A2*A20π0A2A2π
39 34 38 syl AA20π0A2A2π
40 32 39 bitr4d A0AA2πA20π
41 40 biimpd A0AA2πA20π
42 41 3impib A0AA2πA20π
43 25 42 sylbi A02πA20π
44 sinq12ge0 A20π0sinA2
45 43 44 syl A02π0sinA2
46 14 22 sqrtge0d A01cosA2
47 7 46 syl A02π01cosA2
48 7 recnd A02πA
49 ax-1cn 1
50 coscl AcosA
51 subcl 1cosA1cosA
52 49 50 51 sylancr A1cosA
53 52 halfcld A1cosA2
54 53 sqsqrtd A1cosA22=1cosA2
55 halfcl AA2
56 coscl A2cosA2
57 56 sqcld A2cosA22
58 2cn 2
59 mulcom cosA222cosA222=2cosA22
60 57 58 59 sylancl A2cosA222=2cosA22
61 60 oveq2d A212cosA222=122cosA22
62 58 mullidi 12=2
63 df-2 2=1+1
64 62 63 eqtri 12=1+1
65 64 oveq1i 122cosA22=1+1-2cosA22
66 61 65 eqtrdi A212cosA222=1+1-2cosA22
67 subdir 1cosA2221cosA222=12cosA222
68 49 58 67 mp3an13 cosA221cosA222=12cosA222
69 57 68 syl A21cosA222=12cosA222
70 mulcl 2cosA222cosA22
71 58 57 70 sylancr A22cosA22
72 subsub3 12cosA22112cosA221=1+1-2cosA22
73 49 49 72 mp3an13 2cosA2212cosA221=1+1-2cosA22
74 71 73 syl A212cosA221=1+1-2cosA22
75 66 69 74 3eqtr4d A21cosA222=12cosA221
76 sincl A2sinA2
77 76 sqcld A2sinA22
78 77 57 pncand A2sinA22+cosA22-cosA22=sinA22
79 sincossq A2sinA22+cosA22=1
80 79 oveq1d A2sinA22+cosA22-cosA22=1cosA22
81 78 80 eqtr3d A2sinA22=1cosA22
82 81 oveq1d A2sinA222=1cosA222
83 cos2t A2cos2A2=2cosA221
84 83 oveq2d A21cos2A2=12cosA221
85 75 82 84 3eqtr4d A2sinA222=1cos2A2
86 55 85 syl AsinA222=1cos2A2
87 2ne0 20
88 divcan2 A2202A2=A
89 58 87 88 mp3an23 A2A2=A
90 89 fveq2d Acos2A2=cosA
91 90 oveq2d A1cos2A2=1cosA
92 86 91 eqtrd AsinA222=1cosA
93 92 oveq1d AsinA2222=1cosA2
94 55 sincld AsinA2
95 94 sqcld AsinA22
96 divcan4 sinA22220sinA2222=sinA22
97 58 87 96 mp3an23 sinA22sinA2222=sinA22
98 95 97 syl AsinA2222=sinA22
99 54 93 98 3eqtr2rd AsinA22=1cosA22
100 48 99 syl A02πsinA22=1cosA22
101 9 24 45 47 100 sq11d A02πsinA2=1cosA2