Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Brendan Leahy
sin2h
Next ⟩
cos2h
Metamath Proof Explorer
Ascii
Unicode
Theorem
sin2h
Description:
Half-angle rule for sine.
(Contributed by
Brendan Leahy
, 3-Aug-2018)
Ref
Expression
Assertion
sin2h
π
⊢
A
∈
0
2
π
→
sin
A
2
=
1
−
cos
A
2
Proof
Step
Hyp
Ref
Expression
1
0re
⊢
0
∈
ℝ
2
2re
⊢
2
∈
ℝ
3
pire
π
⊢
π
∈
ℝ
4
2
3
remulcli
π
⊢
2
π
∈
ℝ
5
iccssre
π
π
⊢
0
∈
ℝ
∧
2
π
∈
ℝ
→
0
2
π
⊆
ℝ
6
1
4
5
mp2an
π
⊢
0
2
π
⊆
ℝ
7
6
sseli
π
⊢
A
∈
0
2
π
→
A
∈
ℝ
8
7
rehalfcld
π
⊢
A
∈
0
2
π
→
A
2
∈
ℝ
9
8
resincld
π
⊢
A
∈
0
2
π
→
sin
A
2
∈
ℝ
10
1re
⊢
1
∈
ℝ
11
recoscl
⊢
A
∈
ℝ
→
cos
A
∈
ℝ
12
resubcl
⊢
1
∈
ℝ
∧
cos
A
∈
ℝ
→
1
−
cos
A
∈
ℝ
13
10
11
12
sylancr
⊢
A
∈
ℝ
→
1
−
cos
A
∈
ℝ
14
13
rehalfcld
⊢
A
∈
ℝ
→
1
−
cos
A
2
∈
ℝ
15
cosbnd
⊢
A
∈
ℝ
→
−
1
≤
cos
A
∧
cos
A
≤
1
16
15
simprd
⊢
A
∈
ℝ
→
cos
A
≤
1
17
subge0
⊢
1
∈
ℝ
∧
cos
A
∈
ℝ
→
0
≤
1
−
cos
A
↔
cos
A
≤
1
18
10
11
17
sylancr
⊢
A
∈
ℝ
→
0
≤
1
−
cos
A
↔
cos
A
≤
1
19
halfnneg2
⊢
1
−
cos
A
∈
ℝ
→
0
≤
1
−
cos
A
↔
0
≤
1
−
cos
A
2
20
13
19
syl
⊢
A
∈
ℝ
→
0
≤
1
−
cos
A
↔
0
≤
1
−
cos
A
2
21
18
20
bitr3d
⊢
A
∈
ℝ
→
cos
A
≤
1
↔
0
≤
1
−
cos
A
2
22
16
21
mpbid
⊢
A
∈
ℝ
→
0
≤
1
−
cos
A
2
23
14
22
resqrtcld
⊢
A
∈
ℝ
→
1
−
cos
A
2
∈
ℝ
24
7
23
syl
π
⊢
A
∈
0
2
π
→
1
−
cos
A
2
∈
ℝ
25
1
4
elicc2i
π
π
⊢
A
∈
0
2
π
↔
A
∈
ℝ
∧
0
≤
A
∧
A
≤
2
π
26
halfnneg2
⊢
A
∈
ℝ
→
0
≤
A
↔
0
≤
A
2
27
2pos
⊢
0
<
2
28
2
27
pm3.2i
⊢
2
∈
ℝ
∧
0
<
2
29
ledivmul
π
π
π
⊢
A
∈
ℝ
∧
π
∈
ℝ
∧
2
∈
ℝ
∧
0
<
2
→
A
2
≤
π
↔
A
≤
2
π
30
3
28
29
mp3an23
π
π
⊢
A
∈
ℝ
→
A
2
≤
π
↔
A
≤
2
π
31
30
bicomd
π
π
⊢
A
∈
ℝ
→
A
≤
2
π
↔
A
2
≤
π
32
26
31
anbi12d
π
π
⊢
A
∈
ℝ
→
0
≤
A
∧
A
≤
2
π
↔
0
≤
A
2
∧
A
2
≤
π
33
rehalfcl
⊢
A
∈
ℝ
→
A
2
∈
ℝ
34
33
rexrd
⊢
A
∈
ℝ
→
A
2
∈
ℝ
*
35
0xr
⊢
0
∈
ℝ
*
36
3
rexri
π
⊢
π
∈
ℝ
*
37
elicc4
π
π
π
⊢
0
∈
ℝ
*
∧
π
∈
ℝ
*
∧
A
2
∈
ℝ
*
→
A
2
∈
0
π
↔
0
≤
A
2
∧
A
2
≤
π
38
35
36
37
mp3an12
π
π
⊢
A
2
∈
ℝ
*
→
A
2
∈
0
π
↔
0
≤
A
2
∧
A
2
≤
π
39
34
38
syl
π
π
⊢
A
∈
ℝ
→
A
2
∈
0
π
↔
0
≤
A
2
∧
A
2
≤
π
40
32
39
bitr4d
π
π
⊢
A
∈
ℝ
→
0
≤
A
∧
A
≤
2
π
↔
A
2
∈
0
π
41
40
biimpd
π
π
⊢
A
∈
ℝ
→
0
≤
A
∧
A
≤
2
π
→
A
2
∈
0
π
42
41
3impib
π
π
⊢
A
∈
ℝ
∧
0
≤
A
∧
A
≤
2
π
→
A
2
∈
0
π
43
25
42
sylbi
π
π
⊢
A
∈
0
2
π
→
A
2
∈
0
π
44
sinq12ge0
π
⊢
A
2
∈
0
π
→
0
≤
sin
A
2
45
43
44
syl
π
⊢
A
∈
0
2
π
→
0
≤
sin
A
2
46
14
22
sqrtge0d
⊢
A
∈
ℝ
→
0
≤
1
−
cos
A
2
47
7
46
syl
π
⊢
A
∈
0
2
π
→
0
≤
1
−
cos
A
2
48
7
recnd
π
⊢
A
∈
0
2
π
→
A
∈
ℂ
49
ax-1cn
⊢
1
∈
ℂ
50
coscl
⊢
A
∈
ℂ
→
cos
A
∈
ℂ
51
subcl
⊢
1
∈
ℂ
∧
cos
A
∈
ℂ
→
1
−
cos
A
∈
ℂ
52
49
50
51
sylancr
⊢
A
∈
ℂ
→
1
−
cos
A
∈
ℂ
53
52
halfcld
⊢
A
∈
ℂ
→
1
−
cos
A
2
∈
ℂ
54
53
sqsqrtd
⊢
A
∈
ℂ
→
1
−
cos
A
2
2
=
1
−
cos
A
2
55
halfcl
⊢
A
∈
ℂ
→
A
2
∈
ℂ
56
coscl
⊢
A
2
∈
ℂ
→
cos
A
2
∈
ℂ
57
56
sqcld
⊢
A
2
∈
ℂ
→
cos
A
2
2
∈
ℂ
58
2cn
⊢
2
∈
ℂ
59
mulcom
⊢
cos
A
2
2
∈
ℂ
∧
2
∈
ℂ
→
cos
A
2
2
⋅
2
=
2
cos
A
2
2
60
57
58
59
sylancl
⊢
A
2
∈
ℂ
→
cos
A
2
2
⋅
2
=
2
cos
A
2
2
61
60
oveq2d
⊢
A
2
∈
ℂ
→
1
⋅
2
−
cos
A
2
2
⋅
2
=
1
⋅
2
−
2
cos
A
2
2
62
58
mullidi
⊢
1
⋅
2
=
2
63
df-2
⊢
2
=
1
+
1
64
62
63
eqtri
⊢
1
⋅
2
=
1
+
1
65
64
oveq1i
⊢
1
⋅
2
−
2
cos
A
2
2
=
1
+
1
-
2
cos
A
2
2
66
61
65
eqtrdi
⊢
A
2
∈
ℂ
→
1
⋅
2
−
cos
A
2
2
⋅
2
=
1
+
1
-
2
cos
A
2
2
67
subdir
⊢
1
∈
ℂ
∧
cos
A
2
2
∈
ℂ
∧
2
∈
ℂ
→
1
−
cos
A
2
2
⋅
2
=
1
⋅
2
−
cos
A
2
2
⋅
2
68
49
58
67
mp3an13
⊢
cos
A
2
2
∈
ℂ
→
1
−
cos
A
2
2
⋅
2
=
1
⋅
2
−
cos
A
2
2
⋅
2
69
57
68
syl
⊢
A
2
∈
ℂ
→
1
−
cos
A
2
2
⋅
2
=
1
⋅
2
−
cos
A
2
2
⋅
2
70
mulcl
⊢
2
∈
ℂ
∧
cos
A
2
2
∈
ℂ
→
2
cos
A
2
2
∈
ℂ
71
58
57
70
sylancr
⊢
A
2
∈
ℂ
→
2
cos
A
2
2
∈
ℂ
72
subsub3
⊢
1
∈
ℂ
∧
2
cos
A
2
2
∈
ℂ
∧
1
∈
ℂ
→
1
−
2
cos
A
2
2
−
1
=
1
+
1
-
2
cos
A
2
2
73
49
49
72
mp3an13
⊢
2
cos
A
2
2
∈
ℂ
→
1
−
2
cos
A
2
2
−
1
=
1
+
1
-
2
cos
A
2
2
74
71
73
syl
⊢
A
2
∈
ℂ
→
1
−
2
cos
A
2
2
−
1
=
1
+
1
-
2
cos
A
2
2
75
66
69
74
3eqtr4d
⊢
A
2
∈
ℂ
→
1
−
cos
A
2
2
⋅
2
=
1
−
2
cos
A
2
2
−
1
76
sincl
⊢
A
2
∈
ℂ
→
sin
A
2
∈
ℂ
77
76
sqcld
⊢
A
2
∈
ℂ
→
sin
A
2
2
∈
ℂ
78
77
57
pncand
⊢
A
2
∈
ℂ
→
sin
A
2
2
+
cos
A
2
2
-
cos
A
2
2
=
sin
A
2
2
79
sincossq
⊢
A
2
∈
ℂ
→
sin
A
2
2
+
cos
A
2
2
=
1
80
79
oveq1d
⊢
A
2
∈
ℂ
→
sin
A
2
2
+
cos
A
2
2
-
cos
A
2
2
=
1
−
cos
A
2
2
81
78
80
eqtr3d
⊢
A
2
∈
ℂ
→
sin
A
2
2
=
1
−
cos
A
2
2
82
81
oveq1d
⊢
A
2
∈
ℂ
→
sin
A
2
2
⋅
2
=
1
−
cos
A
2
2
⋅
2
83
cos2t
⊢
A
2
∈
ℂ
→
cos
2
A
2
=
2
cos
A
2
2
−
1
84
83
oveq2d
⊢
A
2
∈
ℂ
→
1
−
cos
2
A
2
=
1
−
2
cos
A
2
2
−
1
85
75
82
84
3eqtr4d
⊢
A
2
∈
ℂ
→
sin
A
2
2
⋅
2
=
1
−
cos
2
A
2
86
55
85
syl
⊢
A
∈
ℂ
→
sin
A
2
2
⋅
2
=
1
−
cos
2
A
2
87
2ne0
⊢
2
≠
0
88
divcan2
⊢
A
∈
ℂ
∧
2
∈
ℂ
∧
2
≠
0
→
2
A
2
=
A
89
58
87
88
mp3an23
⊢
A
∈
ℂ
→
2
A
2
=
A
90
89
fveq2d
⊢
A
∈
ℂ
→
cos
2
A
2
=
cos
A
91
90
oveq2d
⊢
A
∈
ℂ
→
1
−
cos
2
A
2
=
1
−
cos
A
92
86
91
eqtrd
⊢
A
∈
ℂ
→
sin
A
2
2
⋅
2
=
1
−
cos
A
93
92
oveq1d
⊢
A
∈
ℂ
→
sin
A
2
2
⋅
2
2
=
1
−
cos
A
2
94
55
sincld
⊢
A
∈
ℂ
→
sin
A
2
∈
ℂ
95
94
sqcld
⊢
A
∈
ℂ
→
sin
A
2
2
∈
ℂ
96
divcan4
⊢
sin
A
2
2
∈
ℂ
∧
2
∈
ℂ
∧
2
≠
0
→
sin
A
2
2
⋅
2
2
=
sin
A
2
2
97
58
87
96
mp3an23
⊢
sin
A
2
2
∈
ℂ
→
sin
A
2
2
⋅
2
2
=
sin
A
2
2
98
95
97
syl
⊢
A
∈
ℂ
→
sin
A
2
2
⋅
2
2
=
sin
A
2
2
99
54
93
98
3eqtr2rd
⊢
A
∈
ℂ
→
sin
A
2
2
=
1
−
cos
A
2
2
100
48
99
syl
π
⊢
A
∈
0
2
π
→
sin
A
2
2
=
1
−
cos
A
2
2
101
9
24
45
47
100
sq11d
π
⊢
A
∈
0
2
π
→
sin
A
2
=
1
−
cos
A
2