| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sitgval.b |  | 
						
							| 2 |  | sitgval.j |  | 
						
							| 3 |  | sitgval.s |  | 
						
							| 4 |  | sitgval.0 |  | 
						
							| 5 |  | sitgval.x |  | 
						
							| 6 |  | sitgval.h |  | 
						
							| 7 |  | sitgval.1 |  | 
						
							| 8 |  | sitgval.2 |  | 
						
							| 9 |  | sibfmbl.1 |  | 
						
							| 10 | 1 2 3 4 5 6 7 8 | sitgval |  | 
						
							| 11 |  | simpr |  | 
						
							| 12 | 11 | rneqd |  | 
						
							| 13 | 12 | difeq1d |  | 
						
							| 14 | 11 | cnveqd |  | 
						
							| 15 | 14 | imaeq1d |  | 
						
							| 16 | 15 | fveq2d |  | 
						
							| 17 | 16 | fveq2d |  | 
						
							| 18 | 17 | oveq1d |  | 
						
							| 19 | 13 18 | mpteq12dv |  | 
						
							| 20 | 19 | oveq2d |  | 
						
							| 21 | 1 2 3 4 5 6 7 8 9 | sibfmbl |  | 
						
							| 22 | 1 2 3 4 5 6 7 8 9 | sibfrn |  | 
						
							| 23 | 1 2 3 4 5 6 7 8 9 | sibfima |  | 
						
							| 24 | 23 | ralrimiva |  | 
						
							| 25 | 21 22 24 | jca32 |  | 
						
							| 26 |  | rneq |  | 
						
							| 27 | 26 | eleq1d |  | 
						
							| 28 | 26 | difeq1d |  | 
						
							| 29 |  | cnveq |  | 
						
							| 30 | 29 | imaeq1d |  | 
						
							| 31 | 30 | fveq2d |  | 
						
							| 32 | 31 | eleq1d |  | 
						
							| 33 | 28 32 | raleqbidv |  | 
						
							| 34 | 27 33 | anbi12d |  | 
						
							| 35 | 34 | elrab |  | 
						
							| 36 | 25 35 | sylibr |  | 
						
							| 37 |  | ovexd |  | 
						
							| 38 | 10 20 36 37 | fvmptd |  |