Metamath Proof Explorer


Theorem sitgfval

Description: Value of the Bochner integral for a simple function F . (Contributed by Thierry Arnoux, 30-Jan-2018)

Ref Expression
Hypotheses sitgval.b โŠขB=BaseW
sitgval.j โŠขJ=TopOpenโกW
sitgval.s โŠขS=๐›”โกJ
sitgval.0 โŠข0ห™=0W
sitgval.x โŠขยทห™=โ‹…W
sitgval.h โŠขH=โ„HomโกScalarโกW
sitgval.1 โŠขฯ†โ†’WโˆˆV
sitgval.2 โŠขฯ†โ†’Mโˆˆโ‹ƒranโกmeasures
sibfmbl.1 โŠขฯ†โ†’Fโˆˆโ„‘MW
Assertion sitgfval โŠขฯ†โ†’โˆซโ„‘WFdM=โˆ‘WxโˆˆranโกFโˆ–0ห™HโกMโกF-1xยทห™x

Proof

Step Hyp Ref Expression
1 sitgval.b โŠขB=BaseW
2 sitgval.j โŠขJ=TopOpenโกW
3 sitgval.s โŠขS=๐›”โกJ
4 sitgval.0 โŠข0ห™=0W
5 sitgval.x โŠขยทห™=โ‹…W
6 sitgval.h โŠขH=โ„HomโกScalarโกW
7 sitgval.1 โŠขฯ†โ†’WโˆˆV
8 sitgval.2 โŠขฯ†โ†’Mโˆˆโ‹ƒranโกmeasures
9 sibfmbl.1 โŠขฯ†โ†’Fโˆˆโ„‘MW
10 1 2 3 4 5 6 7 8 sitgval โŠขฯ†โ†’WsitgM=fโˆˆgโˆˆdomโกMMblFnฮผS|ranโกgโˆˆFinโˆงโˆ€xโˆˆranโกgโˆ–0ห™Mโกg-1xโˆˆ0+โˆžโŸผโˆ‘Wxโˆˆranโกfโˆ–0ห™HโกMโกf-1xยทห™x
11 simpr โŠขฯ†โˆงf=Fโ†’f=F
12 11 rneqd โŠขฯ†โˆงf=Fโ†’ranโกf=ranโกF
13 12 difeq1d โŠขฯ†โˆงf=Fโ†’ranโกfโˆ–0ห™=ranโกFโˆ–0ห™
14 11 cnveqd โŠขฯ†โˆงf=Fโ†’f-1=F-1
15 14 imaeq1d โŠขฯ†โˆงf=Fโ†’f-1x=F-1x
16 15 fveq2d โŠขฯ†โˆงf=Fโ†’Mโกf-1x=MโกF-1x
17 16 fveq2d โŠขฯ†โˆงf=Fโ†’HโกMโกf-1x=HโกMโกF-1x
18 17 oveq1d โŠขฯ†โˆงf=Fโ†’HโกMโกf-1xยทห™x=HโกMโกF-1xยทห™x
19 13 18 mpteq12dv โŠขฯ†โˆงf=Fโ†’xโˆˆranโกfโˆ–0ห™โŸผHโกMโกf-1xยทห™x=xโˆˆranโกFโˆ–0ห™โŸผHโกMโกF-1xยทห™x
20 19 oveq2d โŠขฯ†โˆงf=Fโ†’โˆ‘Wxโˆˆranโกfโˆ–0ห™HโกMโกf-1xยทห™x=โˆ‘WxโˆˆranโกFโˆ–0ห™HโกMโกF-1xยทห™x
21 1 2 3 4 5 6 7 8 9 sibfmbl โŠขฯ†โ†’FโˆˆdomโกMMblFnฮผS
22 1 2 3 4 5 6 7 8 9 sibfrn โŠขฯ†โ†’ranโกFโˆˆFin
23 1 2 3 4 5 6 7 8 9 sibfima โŠขฯ†โˆงxโˆˆranโกFโˆ–0ห™โ†’MโกF-1xโˆˆ0+โˆž
24 23 ralrimiva โŠขฯ†โ†’โˆ€xโˆˆranโกFโˆ–0ห™MโกF-1xโˆˆ0+โˆž
25 21 22 24 jca32 โŠขฯ†โ†’FโˆˆdomโกMMblFnฮผSโˆงranโกFโˆˆFinโˆงโˆ€xโˆˆranโกFโˆ–0ห™MโกF-1xโˆˆ0+โˆž
26 rneq โŠขg=Fโ†’ranโกg=ranโกF
27 26 eleq1d โŠขg=Fโ†’ranโกgโˆˆFinโ†”ranโกFโˆˆFin
28 26 difeq1d โŠขg=Fโ†’ranโกgโˆ–0ห™=ranโกFโˆ–0ห™
29 cnveq โŠขg=Fโ†’g-1=F-1
30 29 imaeq1d โŠขg=Fโ†’g-1x=F-1x
31 30 fveq2d โŠขg=Fโ†’Mโกg-1x=MโกF-1x
32 31 eleq1d โŠขg=Fโ†’Mโกg-1xโˆˆ0+โˆžโ†”MโกF-1xโˆˆ0+โˆž
33 28 32 raleqbidv โŠขg=Fโ†’โˆ€xโˆˆranโกgโˆ–0ห™Mโกg-1xโˆˆ0+โˆžโ†”โˆ€xโˆˆranโกFโˆ–0ห™MโกF-1xโˆˆ0+โˆž
34 27 33 anbi12d โŠขg=Fโ†’ranโกgโˆˆFinโˆงโˆ€xโˆˆranโกgโˆ–0ห™Mโกg-1xโˆˆ0+โˆžโ†”ranโกFโˆˆFinโˆงโˆ€xโˆˆranโกFโˆ–0ห™MโกF-1xโˆˆ0+โˆž
35 34 elrab โŠขFโˆˆgโˆˆdomโกMMblFnฮผS|ranโกgโˆˆFinโˆงโˆ€xโˆˆranโกgโˆ–0ห™Mโกg-1xโˆˆ0+โˆžโ†”FโˆˆdomโกMMblFnฮผSโˆงranโกFโˆˆFinโˆงโˆ€xโˆˆranโกFโˆ–0ห™MโกF-1xโˆˆ0+โˆž
36 25 35 sylibr โŠขฯ†โ†’FโˆˆgโˆˆdomโกMMblFnฮผS|ranโกgโˆˆFinโˆงโˆ€xโˆˆranโกgโˆ–0ห™Mโกg-1xโˆˆ0+โˆž
37 ovexd โŠขฯ†โ†’โˆ‘WxโˆˆranโกFโˆ–0ห™HโกMโกF-1xยทห™xโˆˆV
38 10 20 36 37 fvmptd โŠขฯ†โ†’โˆซโ„‘WFdM=โˆ‘WxโˆˆranโกFโˆ–0ห™HโกMโกF-1xยทห™x