Metamath Proof Explorer


Theorem smadiadetglem2

Description: Lemma 2 for smadiadetg . (Contributed by AV, 14-Feb-2019)

Ref Expression
Hypotheses smadiadet.a A=NMatR
smadiadet.b B=BaseA
smadiadet.r RCRing
smadiadet.d D=NmaDetR
smadiadet.h E=NKmaDetR
smadiadetg.x ·˙=R
Assertion smadiadetglem2 MBKNSBaseRKMNmatRRepRSKK×N=K×N×S·˙fKNminMatR1RMKK×N

Proof

Step Hyp Ref Expression
1 smadiadet.a A=NMatR
2 smadiadet.b B=BaseA
3 smadiadet.r RCRing
4 smadiadet.d D=NmaDetR
5 smadiadet.h E=NKmaDetR
6 smadiadetg.x ·˙=R
7 snex KV
8 7 a1i MBKNSBaseRKV
9 1 2 matrcl MBNFinRV
10 elex NFinNV
11 10 adantr NFinRVNV
12 9 11 syl MBNV
13 12 3ad2ant1 MBKNSBaseRNV
14 simp13 MBKNSBaseRiKjNSBaseR
15 crngring RCRingRRing
16 3 15 mp1i MBKNSBaseRiKjNRRing
17 eqid BaseR=BaseR
18 eqid 1R=1R
19 17 18 ringidcl RRing1RBaseR
20 eqid 0R=0R
21 17 20 ring0cl RRing0RBaseR
22 19 21 ifcld RRingifj=K1R0RBaseR
23 16 22 syl MBKNSBaseRiKjNifj=K1R0RBaseR
24 fconstmpo K×N×S=iK,jNS
25 24 a1i MBKNSBaseRK×N×S=iK,jNS
26 eqidd MBKNSBaseRiK,jNifj=K1R0R=iK,jNifj=K1R0R
27 8 13 14 23 25 26 offval22 MBKNSBaseRK×N×S·˙fiK,jNifj=K1R0R=iK,jNS·˙ifj=K1R0R
28 3 15 mp1i SBaseRRRing
29 17 6 18 ringridm RRingSBaseRS·˙1R=S
30 28 29 mpancom SBaseRS·˙1R=S
31 30 3ad2ant3 MBKNSBaseRS·˙1R=S
32 31 ad2antrl j=KMBKNSBaseRjNS·˙1R=S
33 iftrue j=Kifj=K1R0R=1R
34 33 adantr j=KMBKNSBaseRjNifj=K1R0R=1R
35 34 oveq2d j=KMBKNSBaseRjNS·˙ifj=K1R0R=S·˙1R
36 iftrue j=Kifj=KS0R=S
37 36 adantr j=KMBKNSBaseRjNifj=KS0R=S
38 32 35 37 3eqtr4d j=KMBKNSBaseRjNS·˙ifj=K1R0R=ifj=KS0R
39 17 6 20 ringrz RRingSBaseRS·˙0R=0R
40 28 39 mpancom SBaseRS·˙0R=0R
41 40 3ad2ant3 MBKNSBaseRS·˙0R=0R
42 41 ad2antrl ¬j=KMBKNSBaseRjNS·˙0R=0R
43 iffalse ¬j=Kifj=K1R0R=0R
44 43 oveq2d ¬j=KS·˙ifj=K1R0R=S·˙0R
45 44 adantr ¬j=KMBKNSBaseRjNS·˙ifj=K1R0R=S·˙0R
46 iffalse ¬j=Kifj=KS0R=0R
47 46 adantr ¬j=KMBKNSBaseRjNifj=KS0R=0R
48 42 45 47 3eqtr4d ¬j=KMBKNSBaseRjNS·˙ifj=K1R0R=ifj=KS0R
49 38 48 pm2.61ian MBKNSBaseRjNS·˙ifj=K1R0R=ifj=KS0R
50 49 3adant2 MBKNSBaseRiKjNS·˙ifj=K1R0R=ifj=KS0R
51 50 mpoeq3dva MBKNSBaseRiK,jNS·˙ifj=K1R0R=iK,jNifj=KS0R
52 27 51 eqtrd MBKNSBaseRK×N×S·˙fiK,jNifj=K1R0R=iK,jNifj=KS0R
53 simp2 MBKNSBaseRKN
54 eqid NminMatR1R=NminMatR1R
55 1 2 54 18 20 minmar1val MBKNKNKNminMatR1RMK=iN,jNifi=Kifj=K1R0RiMj
56 53 55 syld3an3 MBKNSBaseRKNminMatR1RMK=iN,jNifi=Kifj=K1R0RiMj
57 56 reseq1d MBKNSBaseRKNminMatR1RMKK×N=iN,jNifi=Kifj=K1R0RiMjK×N
58 snssi KNKN
59 58 3ad2ant2 MBKNSBaseRKN
60 ssid NN
61 resmpo KNNNiN,jNifi=Kifj=K1R0RiMjK×N=iK,jNifi=Kifj=K1R0RiMj
62 59 60 61 sylancl MBKNSBaseRiN,jNifi=Kifj=K1R0RiMjK×N=iK,jNifi=Kifj=K1R0RiMj
63 mposnif iK,jNifi=Kifj=K1R0RiMj=iK,jNifj=K1R0R
64 63 a1i MBKNSBaseRiK,jNifi=Kifj=K1R0RiMj=iK,jNifj=K1R0R
65 57 62 64 3eqtrd MBKNSBaseRKNminMatR1RMKK×N=iK,jNifj=K1R0R
66 65 oveq2d MBKNSBaseRK×N×S·˙fKNminMatR1RMKK×N=K×N×S·˙fiK,jNifj=K1R0R
67 3simpb MBKNSBaseRMBSBaseR
68 eqid NmatRRepR=NmatRRepR
69 1 2 68 20 marrepval MBSBaseRKNKNKMNmatRRepRSK=iN,jNifi=Kifj=KS0RiMj
70 67 53 53 69 syl12anc MBKNSBaseRKMNmatRRepRSK=iN,jNifi=Kifj=KS0RiMj
71 70 reseq1d MBKNSBaseRKMNmatRRepRSKK×N=iN,jNifi=Kifj=KS0RiMjK×N
72 resmpo KNNNiN,jNifi=Kifj=KS0RiMjK×N=iK,jNifi=Kifj=KS0RiMj
73 59 60 72 sylancl MBKNSBaseRiN,jNifi=Kifj=KS0RiMjK×N=iK,jNifi=Kifj=KS0RiMj
74 mposnif iK,jNifi=Kifj=KS0RiMj=iK,jNifj=KS0R
75 74 a1i MBKNSBaseRiK,jNifi=Kifj=KS0RiMj=iK,jNifj=KS0R
76 71 73 75 3eqtrd MBKNSBaseRKMNmatRRepRSKK×N=iK,jNifj=KS0R
77 52 66 76 3eqtr4rd MBKNSBaseRKMNmatRRepRSKK×N=K×N×S·˙fKNminMatR1RMKK×N