Metamath Proof Explorer


Theorem smfpimgtxr

Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021) (Revised by Glauco Siliprandi, 15-Dec-2024)

Ref Expression
Hypotheses smfpimgtxr.x _xF
smfpimgtxr.s φSSAlg
smfpimgtxr.f φFSMblFnS
smfpimgtxr.d D=domF
smfpimgtxr.a φA*
Assertion smfpimgtxr φxD|A<FxS𝑡D

Proof

Step Hyp Ref Expression
1 smfpimgtxr.x _xF
2 smfpimgtxr.s φSSAlg
3 smfpimgtxr.f φFSMblFnS
4 smfpimgtxr.d D=domF
5 smfpimgtxr.a φA*
6 breq1 A=−∞A<Fx−∞<Fx
7 6 rabbidv A=−∞xD|A<Fx=xD|−∞<Fx
8 1 nfdm _xdomF
9 4 8 nfcxfr _xD
10 nfcv _yD
11 nfv y−∞<Fx
12 nfcv _x−∞
13 nfcv _x<
14 nfcv _xy
15 1 14 nffv _xFy
16 12 13 15 nfbr x−∞<Fy
17 fveq2 x=yFx=Fy
18 17 breq2d x=y−∞<Fx−∞<Fy
19 9 10 11 16 18 cbvrabw xD|−∞<Fx=yD|−∞<Fy
20 nfv yφ
21 2 3 4 smff φF:D
22 21 ffvelcdmda φyDFy
23 20 22 pimgtmnf φyD|−∞<Fy=D
24 19 23 eqtrid φxD|−∞<Fx=D
25 7 24 sylan9eqr φA=−∞xD|A<Fx=D
26 2 3 4 smfdmss φDS
27 2 26 subsaluni φDS𝑡D
28 27 adantr φA=−∞DS𝑡D
29 25 28 eqeltrd φA=−∞xD|A<FxS𝑡D
30 breq1 A=+∞A<Fx+∞<Fx
31 30 rabbidv A=+∞xD|A<Fx=xD|+∞<Fx
32 1 9 21 pimgtpnf2f φxD|+∞<Fx=
33 31 32 sylan9eqr φA=+∞xD|A<Fx=
34 3 dmexd φdomFV
35 4 34 eqeltrid φDV
36 eqid S𝑡D=S𝑡D
37 2 35 36 subsalsal φS𝑡DSAlg
38 37 0sald φS𝑡D
39 38 adantr φA=+∞S𝑡D
40 33 39 eqeltrd φA=+∞xD|A<FxS𝑡D
41 40 adantlr φA−∞A=+∞xD|A<FxS𝑡D
42 simpll φA−∞¬A=+∞φ
43 42 5 syl φA−∞¬A=+∞A*
44 simplr φA−∞¬A=+∞A−∞
45 neqne ¬A=+∞A+∞
46 45 adantl φA−∞¬A=+∞A+∞
47 43 44 46 xrred φA−∞¬A=+∞A
48 2 adantr φASSAlg
49 3 adantr φAFSMblFnS
50 simpr φAA
51 1 48 49 4 50 smfpreimagtf φAxD|A<FxS𝑡D
52 42 47 51 syl2anc φA−∞¬A=+∞xD|A<FxS𝑡D
53 41 52 pm2.61dan φA−∞xD|A<FxS𝑡D
54 29 53 pm2.61dane φxD|A<FxS𝑡D