Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021) (Revised by Glauco Siliprandi, 15-Dec-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | smfpimgtxr.x | |
|
smfpimgtxr.s | |
||
smfpimgtxr.f | |
||
smfpimgtxr.d | |
||
smfpimgtxr.a | |
||
Assertion | smfpimgtxr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfpimgtxr.x | |
|
2 | smfpimgtxr.s | |
|
3 | smfpimgtxr.f | |
|
4 | smfpimgtxr.d | |
|
5 | smfpimgtxr.a | |
|
6 | breq1 | |
|
7 | 6 | rabbidv | |
8 | 1 | nfdm | |
9 | 4 8 | nfcxfr | |
10 | nfcv | |
|
11 | nfv | |
|
12 | nfcv | |
|
13 | nfcv | |
|
14 | nfcv | |
|
15 | 1 14 | nffv | |
16 | 12 13 15 | nfbr | |
17 | fveq2 | |
|
18 | 17 | breq2d | |
19 | 9 10 11 16 18 | cbvrabw | |
20 | nfv | |
|
21 | 2 3 4 | smff | |
22 | 21 | ffvelcdmda | |
23 | 20 22 | pimgtmnf | |
24 | 19 23 | eqtrid | |
25 | 7 24 | sylan9eqr | |
26 | 2 3 4 | smfdmss | |
27 | 2 26 | subsaluni | |
28 | 27 | adantr | |
29 | 25 28 | eqeltrd | |
30 | breq1 | |
|
31 | 30 | rabbidv | |
32 | 1 9 21 | pimgtpnf2f | |
33 | 31 32 | sylan9eqr | |
34 | 3 | dmexd | |
35 | 4 34 | eqeltrid | |
36 | eqid | |
|
37 | 2 35 36 | subsalsal | |
38 | 37 | 0sald | |
39 | 38 | adantr | |
40 | 33 39 | eqeltrd | |
41 | 40 | adantlr | |
42 | simpll | |
|
43 | 42 5 | syl | |
44 | simplr | |
|
45 | neqne | |
|
46 | 45 | adantl | |
47 | 43 44 46 | xrred | |
48 | 2 | adantr | |
49 | 3 | adantr | |
50 | simpr | |
|
51 | 1 48 49 4 50 | smfpreimagtf | |
52 | 42 47 51 | syl2anc | |
53 | 41 52 | pm2.61dan | |
54 | 29 53 | pm2.61dane | |