| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smfsuplem3.m |
|
| 2 |
|
smfsuplem3.z |
|
| 3 |
|
smfsuplem3.s |
|
| 4 |
|
smfsuplem3.f |
|
| 5 |
|
smfsuplem3.d |
|
| 6 |
|
smfsuplem3.g |
|
| 7 |
|
nfv |
|
| 8 |
|
ssrab2 |
|
| 9 |
5 8
|
eqsstri |
|
| 10 |
9
|
a1i |
|
| 11 |
|
uzid |
|
| 12 |
1 11
|
syl |
|
| 13 |
12 2
|
eleqtrrdi |
|
| 14 |
|
fveq2 |
|
| 15 |
14
|
dmeqd |
|
| 16 |
4 13
|
ffvelcdmd |
|
| 17 |
|
eqid |
|
| 18 |
3 16 17
|
smfdmss |
|
| 19 |
13 15 18
|
iinssd |
|
| 20 |
10 19
|
sstrd |
|
| 21 |
|
nfv |
|
| 22 |
13
|
ne0d |
|
| 23 |
22
|
adantr |
|
| 24 |
3
|
adantr |
|
| 25 |
4
|
ffvelcdmda |
|
| 26 |
|
eqid |
|
| 27 |
24 25 26
|
smff |
|
| 28 |
27
|
adantlr |
|
| 29 |
|
iinss2 |
|
| 30 |
29
|
adantl |
|
| 31 |
9
|
sseli |
|
| 32 |
31
|
adantr |
|
| 33 |
30 32
|
sseldd |
|
| 34 |
33
|
adantll |
|
| 35 |
28 34
|
ffvelcdmd |
|
| 36 |
5
|
reqabi |
|
| 37 |
36
|
simprbi |
|
| 38 |
37
|
adantl |
|
| 39 |
21 23 35 38
|
suprclrnmpt |
|
| 40 |
39 6
|
fmptd |
|
| 41 |
1
|
adantr |
|
| 42 |
3
|
adantr |
|
| 43 |
4
|
adantr |
|
| 44 |
|
simpr |
|
| 45 |
41 2 42 43 5 6 44
|
smfsuplem2 |
|
| 46 |
7 3 20 40 45
|
issmfle2d |
|