Description: The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of Fremlin1 p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | smfsupxr.n | |
|
smfsupxr.x | |
||
smfsupxr.m | |
||
smfsupxr.z | |
||
smfsupxr.s | |
||
smfsupxr.f | |
||
smfsupxr.d | |
||
smfsupxr.g | |
||
Assertion | smfsupxr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfsupxr.n | |
|
2 | smfsupxr.x | |
|
3 | smfsupxr.m | |
|
4 | smfsupxr.z | |
|
5 | smfsupxr.s | |
|
6 | smfsupxr.f | |
|
7 | smfsupxr.d | |
|
8 | smfsupxr.g | |
|
9 | 8 | a1i | |
10 | 7 | a1i | |
11 | nfv | |
|
12 | nfcv | |
|
13 | nfii1 | |
|
14 | 12 13 | nfel | |
15 | 11 14 | nfan | |
16 | 3 4 | uzn0d | |
17 | 16 | adantr | |
18 | 5 | adantr | |
19 | 6 | ffvelcdmda | |
20 | eqid | |
|
21 | 18 19 20 | smff | |
22 | 21 | adantlr | |
23 | eliinid | |
|
24 | 23 | adantll | |
25 | 22 24 | ffvelcdmd | |
26 | 15 17 25 | supxrre3rnmpt | |
27 | 26 | rabbidva | |
28 | 10 27 | eqtrd | |
29 | nfmpt1 | |
|
30 | 29 | nfrn | |
31 | nfcv | |
|
32 | nfcv | |
|
33 | 30 31 32 | nfsup | |
34 | nfcv | |
|
35 | 33 34 | nfel | |
36 | 35 13 | nfrabw | |
37 | 7 36 | nfcxfr | |
38 | 12 37 | nfel | |
39 | 11 38 | nfan | |
40 | 16 | adantr | |
41 | 21 | adantlr | |
42 | nfcv | |
|
43 | nfcv | |
|
44 | 2 43 | nffv | |
45 | 44 | nfdm | |
46 | 42 45 | nfiin | |
47 | 46 | ssrab2f | |
48 | 7 47 | eqsstri | |
49 | id | |
|
50 | 48 49 | sselid | |
51 | 50 23 | sylan | |
52 | 51 | adantll | |
53 | 41 52 | ffvelcdmd | |
54 | 49 7 | eleqtrdi | |
55 | rabidim2 | |
|
56 | 54 55 | syl | |
57 | 56 | adantl | |
58 | 50 | adantl | |
59 | 58 26 | syldan | |
60 | 57 59 | mpbid | |
61 | 39 40 53 60 | supxrrernmpt | |
62 | 28 61 | mpteq12dva | |
63 | 9 62 | eqtrd | |
64 | eqid | |
|
65 | eqid | |
|
66 | 1 2 3 4 5 6 64 65 | smfsup | |
67 | 63 66 | eqeltrd | |