Metamath Proof Explorer


Theorem sn-inelr

Description: inelr without ax-mulcom . (Contributed by SN, 1-Jun-2024)

Ref Expression
Assertion sn-inelr ¬i

Proof

Step Hyp Ref Expression
1 0re 0
2 lttri4 i0i<0i=00<i
3 1 2 mpan2 ii<0i=00<i
4 reneg1lt0 0-1<0
5 1re 1
6 rernegcl 10-1
7 5 6 ax-mp 0-1
8 7 1 ltnsymi 0-1<0¬0<0-1
9 4 8 ax-mp ¬0<0-1
10 relt0neg1 ii<00<0-i
11 rernegcl i0-i
12 mulgt0 0-i0<0-i0-i0<0-i0<0-i0-i
13 12 anidms 0-i0<0-i0<0-i0-i
14 11 13 sylan i0<0-i0<0-i0-i
15 id ii
16 11 15 remulneg2d i0-i0-i=0-0-ii
17 15 15 remulcld iii
18 15 17 remulcld iiii
19 ipiiie0 i+iii=0
20 renegadd iiii0-i=iiii+iii=0
21 19 20 mpbiri iiii0-i=iii
22 18 21 mpdan i0-i=iii
23 22 oveq1d i0-ii=iiii
24 ax-icn i
25 24 24 24 mulassi iii=iii
26 25 oveq1i iiii=iiii
27 24 24 mulcli ii
28 27 24 24 mulassi iiii=iiii
29 26 28 eqtr3i iiii=iiii
30 29 a1i iiiii=iiii
31 rei4 iiii=1
32 31 a1i iiiii=1
33 23 30 32 3eqtrd i0-ii=1
34 33 oveq2d i0-0-ii=0-1
35 16 34 eqtrd i0-i0-i=0-1
36 35 breq2d i0<0-i0-i0<0-1
37 36 adantr i0<0-i0<0-i0-i0<0-1
38 14 37 mpbid i0<0-i0<0-1
39 38 ex i0<0-i0<0-1
40 10 39 sylbid ii<00<0-1
41 9 40 mtoi i¬i<0
42 0ne1 01
43 42 neii ¬0=1
44 oveq12 i=0i=0ii=00
45 44 anidms i=0ii=00
46 45 oveq1d i=0ii+1=00+1
47 ax-i2m1 ii+1=0
48 remul02 000=0
49 1 48 ax-mp 00=0
50 49 oveq1i 00+1=0+1
51 readdlid 10+1=1
52 5 51 ax-mp 0+1=1
53 50 52 eqtri 00+1=1
54 46 47 53 3eqtr3g i=00=1
55 43 54 mto ¬i=0
56 55 a1i i¬i=0
57 mulgt0 i0<ii0<i0<ii
58 57 anidms i0<i0<ii
59 reixi ii=0-1
60 58 59 breqtrdi i0<i0<0-1
61 60 ex i0<i0<0-1
62 9 61 mtoi i¬0<i
63 3ioran ¬i<0i=00<i¬i<0¬i=0¬0<i
64 41 56 62 63 syl3anbrc i¬i<0i=00<i
65 3 64 pm2.65i ¬i