Metamath Proof Explorer


Theorem sqrtpwpw2p

Description: The floor of the square root of 2 to the power of 2 to the power of a positive integer plus a bounded nonnegative integer. (Contributed by AV, 28-Jul-2021)

Ref Expression
Assertion sqrtpwpw2p NM0M<22N1+1+122N+M=22N1

Proof

Step Hyp Ref Expression
1 nncn NN
2 1 adantr NM0N
3 npcan1 NN-1+1=N
4 2 3 syl NM0N-1+1=N
5 4 eqcomd NM0N=N-1+1
6 5 oveq2d NM02N=2N-1+1
7 2cnd NM02
8 nnm1nn0 NN10
9 8 adantr NM0N10
10 7 9 expp1d NM02N-1+1=2N12
11 6 10 eqtrd NM02N=2N12
12 11 oveq2d NM022N=22N12
13 2nn0 20
14 13 a1i NM020
15 13 a1i N20
16 15 8 nn0expcld N2N10
17 16 adantr NM02N10
18 7 14 17 expmuld NM022N12=22N12
19 12 18 eqtrd NM022N=22N12
20 nn0ge0 M00M
21 20 adantl NM00M
22 nnnn0 NN0
23 15 22 nn0expcld N2N0
24 15 23 nn0expcld N22N0
25 24 nn0red N22N
26 nn0re M0M
27 25 26 anim12i NM022NM
28 addge01 22NM0M22N22N+M
29 27 28 syl NM00M22N22N+M
30 21 29 mpbid NM022N22N+M
31 19 30 eqbrtrrd NM022N1222N+M
32 24 adantr NM022N0
33 simpr NM0M0
34 32 33 nn0addcld NM022N+M0
35 nn0re 22N+M022N+M
36 nn0ge0 22N+M0022N+M
37 35 36 jca 22N+M022N+M022N+M
38 34 37 syl NM022N+M022N+M
39 resqrtth 22N+M022N+M22N+M2=22N+M
40 38 39 syl NM022N+M2=22N+M
41 31 40 breqtrrd NM022N1222N+M2
42 15 16 nn0expcld N22N10
43 nn0re 22N1022N1
44 nn0ge0 22N10022N1
45 43 44 jca 22N1022N1022N1
46 42 45 syl N22N1022N1
47 46 adantr NM022N1022N1
48 resqrtcl 22N+M022N+M22N+M
49 38 48 syl NM022N+M
50 sqrtge0 22N+M022N+M022N+M
51 38 50 syl NM0022N+M
52 le2sq 22N1022N122N+M022N+M22N122N+M22N1222N+M2
53 47 49 51 52 syl12anc NM022N122N+M22N1222N+M2
54 41 53 mpbird NM022N122N+M
55 54 3adant3 NM0M<22N1+1+122N122N+M
56 26 adantl NM0M
57 peano2nn0 2N102N1+10
58 16 57 syl N2N1+10
59 15 58 nn0expcld N22N1+10
60 59 adantr NM022N1+10
61 peano2nn0 22N1+1022N1+1+10
62 60 61 syl NM022N1+1+10
63 62 nn0red NM022N1+1+1
64 32 nn0red NM022N
65 axltadd M22N1+1+122NM<22N1+1+122N+M<22N+22N1+1+1
66 56 63 64 65 syl3anc NM0M<22N1+1+122N+M<22N+22N1+1+1
67 66 3impia NM0M<22N1+1+122N+M<22N+22N1+1+1
68 24 nn0cnd N22N
69 68 3ad2ant1 NM0M<22N1+1+122N
70 59 nn0cnd N22N1+1
71 70 3ad2ant1 NM0M<22N1+1+122N1+1
72 1cnd NM0M<22N1+1+11
73 69 71 72 addassd NM0M<22N1+1+122N+22N1+1+1=22N+22N1+1+1
74 67 73 breqtrrd NM0M<22N1+1+122N+M<22N+22N1+1+1
75 42 nn0cnd N22N1
76 binom21 22N122N1+12=22N12+222N1+1
77 75 76 syl N22N1+12=22N12+222N1+1
78 2cnd N2
79 78 15 16 expmuld N22N12=22N12
80 78 8 expp1d N2N-1+1=2N12
81 1 3 syl NN-1+1=N
82 81 oveq2d N2N-1+1=2N
83 80 82 eqtr3d N2N12=2N
84 83 oveq2d N22N12=22N
85 79 84 eqtr3d N22N12=22N
86 78 75 mulcomd N222N1=22N12
87 78 16 expp1d N22N1+1=22N12
88 86 87 eqtr4d N222N1=22N1+1
89 85 88 oveq12d N22N12+222N1=22N+22N1+1
90 89 oveq1d N22N12+222N1+1=22N+22N1+1+1
91 77 90 eqtrd N22N1+12=22N+22N1+1+1
92 91 adantr NM022N1+12=22N+22N1+1+1
93 40 92 breq12d NM022N+M2<22N1+1222N+M<22N+22N1+1+1
94 93 3adant3 NM0M<22N1+1+122N+M2<22N1+1222N+M<22N+22N1+1+1
95 74 94 mpbird NM0M<22N1+1+122N+M2<22N1+12
96 34 nn0red NM022N+M
97 nn0ge0 22N0022N
98 24 97 syl N022N
99 98 20 anim12i NM0022N0M
100 27 99 jca NM022NM022N0M
101 addge0 22NM022N0M022N+M
102 100 101 syl NM0022N+M
103 96 102 resqrtcld NM022N+M
104 peano2nn0 22N1022N1+10
105 42 104 syl N22N1+10
106 nn0re 22N1+1022N1+1
107 nn0ge0 22N1+10022N1+1
108 106 107 jca 22N1+1022N1+1022N1+1
109 105 108 syl N22N1+1022N1+1
110 109 adantr NM022N1+1022N1+1
111 lt2sq 22N+M022N+M22N1+1022N1+122N+M<22N1+122N+M2<22N1+12
112 103 51 110 111 syl21anc NM022N+M<22N1+122N+M2<22N1+12
113 112 3adant3 NM0M<22N1+1+122N+M<22N1+122N+M2<22N1+12
114 95 113 mpbird NM0M<22N1+1+122N+M<22N1+1
115 55 114 jca NM0M<22N1+1+122N122N+M22N+M<22N1+1
116 42 nn0zd N22N1
117 116 adantr NM022N1
118 49 117 jca NM022N+M22N1
119 118 3adant3 NM0M<22N1+1+122N+M22N1
120 flbi 22N+M22N122N+M=22N122N122N+M22N+M<22N1+1
121 119 120 syl NM0M<22N1+1+122N+M=22N122N122N+M22N+M<22N1+1
122 115 121 mpbird NM0M<22N1+1+122N+M=22N1