Metamath Proof Explorer


Theorem ssenen

Description: Equinumerosity of equinumerous subsets of a set. (Contributed by NM, 30-Sep-2004) (Revised by Mario Carneiro, 16-Nov-2014)

Ref Expression
Assertion ssenen ABx|xAxCx|xBxC

Proof

Step Hyp Ref Expression
1 bren ABff:A1-1 ontoB
2 f1odm f:A1-1 ontoBdomf=A
3 vex fV
4 3 dmex domfV
5 2 4 eqeltrrdi f:A1-1 ontoBAV
6 pwexg AV𝒫AV
7 inex1g 𝒫AV𝒫Ax|xCV
8 5 6 7 3syl f:A1-1 ontoB𝒫Ax|xCV
9 f1ofo f:A1-1 ontoBf:AontoB
10 forn f:AontoBranf=B
11 9 10 syl f:A1-1 ontoBranf=B
12 3 rnex ranfV
13 11 12 eqeltrrdi f:A1-1 ontoBBV
14 pwexg BV𝒫BV
15 inex1g 𝒫BV𝒫Bx|xCV
16 13 14 15 3syl f:A1-1 ontoB𝒫Bx|xCV
17 f1of1 f:A1-1 ontoBf:A1-1B
18 17 adantr f:A1-1 ontoByAf:A1-1B
19 13 adantr f:A1-1 ontoByABV
20 simpr f:A1-1 ontoByAyA
21 vex yV
22 21 a1i f:A1-1 ontoByAyV
23 f1imaen2g f:A1-1BBVyAyVfyy
24 18 19 20 22 23 syl22anc f:A1-1 ontoByAfyy
25 entr fyyyCfyC
26 24 25 sylan f:A1-1 ontoByAyCfyC
27 26 expl f:A1-1 ontoByAyCfyC
28 imassrn fyranf
29 28 10 sseqtrid f:AontoBfyB
30 9 29 syl f:A1-1 ontoBfyB
31 27 30 jctild f:A1-1 ontoByAyCfyBfyC
32 elin y𝒫Ax|xCy𝒫Ayx|xC
33 21 elpw y𝒫AyA
34 breq1 x=yxCyC
35 21 34 elab yx|xCyC
36 33 35 anbi12i y𝒫Ayx|xCyAyC
37 32 36 bitri y𝒫Ax|xCyAyC
38 elin fy𝒫Bx|xCfy𝒫Bfyx|xC
39 3 imaex fyV
40 39 elpw fy𝒫BfyB
41 breq1 x=fyxCfyC
42 39 41 elab fyx|xCfyC
43 40 42 anbi12i fy𝒫Bfyx|xCfyBfyC
44 38 43 bitri fy𝒫Bx|xCfyBfyC
45 31 37 44 3imtr4g f:A1-1 ontoBy𝒫Ax|xCfy𝒫Bx|xC
46 f1ocnv f:A1-1 ontoBf-1:B1-1 ontoA
47 f1of1 f-1:B1-1 ontoAf-1:B1-1A
48 f1f1orn f-1:B1-1Af-1:B1-1 ontoranf-1
49 f1of1 f-1:B1-1 ontoranf-1f-1:B1-1ranf-1
50 47 48 49 3syl f-1:B1-1 ontoAf-1:B1-1ranf-1
51 vex zV
52 51 f1imaen f-1:B1-1ranf-1zBf-1zz
53 50 52 sylan f-1:B1-1 ontoAzBf-1zz
54 entr f-1zzzCf-1zC
55 53 54 sylan f-1:B1-1 ontoAzBzCf-1zC
56 55 expl f-1:B1-1 ontoAzBzCf-1zC
57 f1ofo f-1:B1-1 ontoAf-1:BontoA
58 imassrn f-1zranf-1
59 forn f-1:BontoAranf-1=A
60 58 59 sseqtrid f-1:BontoAf-1zA
61 57 60 syl f-1:B1-1 ontoAf-1zA
62 56 61 jctild f-1:B1-1 ontoAzBzCf-1zAf-1zC
63 46 62 syl f:A1-1 ontoBzBzCf-1zAf-1zC
64 elin z𝒫Bx|xCz𝒫Bzx|xC
65 51 elpw z𝒫BzB
66 breq1 x=zxCzC
67 51 66 elab zx|xCzC
68 65 67 anbi12i z𝒫Bzx|xCzBzC
69 64 68 bitri z𝒫Bx|xCzBzC
70 elin f-1z𝒫Ax|xCf-1z𝒫Af-1zx|xC
71 3 cnvex f-1V
72 71 imaex f-1zV
73 72 elpw f-1z𝒫Af-1zA
74 breq1 x=f-1zxCf-1zC
75 72 74 elab f-1zx|xCf-1zC
76 73 75 anbi12i f-1z𝒫Af-1zx|xCf-1zAf-1zC
77 70 76 bitri f-1z𝒫Ax|xCf-1zAf-1zC
78 63 69 77 3imtr4g f:A1-1 ontoBz𝒫Bx|xCf-1z𝒫Ax|xC
79 simpl z𝒫Bzx|xCz𝒫B
80 79 elpwid z𝒫Bzx|xCzB
81 64 80 sylbi z𝒫Bx|xCzB
82 imaeq2 y=f-1zfy=ff-1z
83 f1orel f:A1-1 ontoBRelf
84 dfrel2 Relff-1-1=f
85 83 84 sylib f:A1-1 ontoBf-1-1=f
86 85 imaeq1d f:A1-1 ontoBf-1-1f-1z=ff-1z
87 86 adantr f:A1-1 ontoBzBf-1-1f-1z=ff-1z
88 46 47 syl f:A1-1 ontoBf-1:B1-1A
89 f1imacnv f-1:B1-1AzBf-1-1f-1z=z
90 88 89 sylan f:A1-1 ontoBzBf-1-1f-1z=z
91 87 90 eqtr3d f:A1-1 ontoBzBff-1z=z
92 82 91 sylan9eqr f:A1-1 ontoBzBy=f-1zfy=z
93 92 eqcomd f:A1-1 ontoBzBy=f-1zz=fy
94 93 ex f:A1-1 ontoBzBy=f-1zz=fy
95 81 94 sylan2 f:A1-1 ontoBz𝒫Bx|xCy=f-1zz=fy
96 95 adantrl f:A1-1 ontoBy𝒫Ax|xCz𝒫Bx|xCy=f-1zz=fy
97 simpl y𝒫Ayx|xCy𝒫A
98 97 elpwid y𝒫Ayx|xCyA
99 32 98 sylbi y𝒫Ax|xCyA
100 imaeq2 z=fyf-1z=f-1fy
101 f1imacnv f:A1-1ByAf-1fy=y
102 17 101 sylan f:A1-1 ontoByAf-1fy=y
103 100 102 sylan9eqr f:A1-1 ontoByAz=fyf-1z=y
104 103 eqcomd f:A1-1 ontoByAz=fyy=f-1z
105 104 ex f:A1-1 ontoByAz=fyy=f-1z
106 99 105 sylan2 f:A1-1 ontoBy𝒫Ax|xCz=fyy=f-1z
107 106 adantrr f:A1-1 ontoBy𝒫Ax|xCz𝒫Bx|xCz=fyy=f-1z
108 96 107 impbid f:A1-1 ontoBy𝒫Ax|xCz𝒫Bx|xCy=f-1zz=fy
109 108 ex f:A1-1 ontoBy𝒫Ax|xCz𝒫Bx|xCy=f-1zz=fy
110 8 16 45 78 109 en3d f:A1-1 ontoB𝒫Ax|xC𝒫Bx|xC
111 110 exlimiv ff:A1-1 ontoB𝒫Ax|xC𝒫Bx|xC
112 1 111 sylbi AB𝒫Ax|xC𝒫Bx|xC
113 df-pw 𝒫A=x|xA
114 113 ineq1i 𝒫Ax|xC=x|xAx|xC
115 inab x|xAx|xC=x|xAxC
116 114 115 eqtri 𝒫Ax|xC=x|xAxC
117 df-pw 𝒫B=x|xB
118 117 ineq1i 𝒫Bx|xC=x|xBx|xC
119 inab x|xBx|xC=x|xBxC
120 118 119 eqtri 𝒫Bx|xC=x|xBxC
121 112 116 120 3brtr3g ABx|xAxCx|xBxC