Metamath Proof Explorer


Theorem strlem3a

Description: Lemma for strong state theorem: the function S , that maps a closed subspace to the square of the norm of its projection onto a unit vector, is a state. (Contributed by NM, 28-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypothesis strlem3a.1 S=xCnormprojxu2
Assertion strlem3a unormu=1SStates

Proof

Step Hyp Ref Expression
1 strlem3a.1 S=xCnormprojxu2
2 id xCxC
3 simpl unormu=1u
4 pjhcl xCuprojxu
5 2 3 4 syl2anr unormu=1xCprojxu
6 normcl projxunormprojxu
7 5 6 syl unormu=1xCnormprojxu
8 7 resqcld unormu=1xCnormprojxu2
9 7 sqge0d unormu=1xC0normprojxu2
10 normge0 projxu0normprojxu
11 5 10 syl unormu=1xC0normprojxu
12 pjnorm xCunormprojxunormu
13 2 3 12 syl2anr unormu=1xCnormprojxunormu
14 simplr unormu=1xCnormu=1
15 13 14 breqtrd unormu=1xCnormprojxu1
16 2nn0 20
17 exple1 normprojxu0normprojxunormprojxu120normprojxu21
18 16 17 mpan2 normprojxu0normprojxunormprojxu1normprojxu21
19 7 11 15 18 syl3anc unormu=1xCnormprojxu21
20 elicc01 normprojxu201normprojxu20normprojxu2normprojxu21
21 8 9 19 20 syl3anbrc unormu=1xCnormprojxu201
22 21 1 fmptd unormu=1S:C01
23 helch C
24 1 strlem2 CS=normproju2
25 23 24 ax-mp S=normproju2
26 pjch1 uproju=u
27 26 fveq2d unormproju=normu
28 27 oveq1d unormproju2=normu2
29 oveq1 normu=1normu2=12
30 sq1 12=1
31 29 30 eqtrdi normu=1normu2=1
32 28 31 sylan9eq unormu=1normproju2=1
33 25 32 eqtrid unormu=1S=1
34 pjcjt2 zCwCuzwprojzwu=projzu+projwu
35 34 imp zCwCuzwprojzwu=projzu+projwu
36 35 fveq2d zCwCuzwnormprojzwu=normprojzu+projwu
37 36 oveq1d zCwCuzwnormprojzwu2=normprojzu+projwu2
38 pjopyth zCwCuzwnormprojzu+projwu2=normprojzu2+normprojwu2
39 38 imp zCwCuzwnormprojzu+projwu2=normprojzu2+normprojwu2
40 37 39 eqtrd zCwCuzwnormprojzwu2=normprojzu2+normprojwu2
41 chjcl zCwCzwC
42 41 3adant3 zCwCuzwC
43 42 adantr zCwCuzwzwC
44 1 strlem2 zwCSzw=normprojzwu2
45 43 44 syl zCwCuzwSzw=normprojzwu2
46 3simpa zCwCuzCwC
47 46 adantr zCwCuzwzCwC
48 1 strlem2 zCSz=normprojzu2
49 1 strlem2 wCSw=normprojwu2
50 48 49 oveqan12d zCwCSz+Sw=normprojzu2+normprojwu2
51 47 50 syl zCwCuzwSz+Sw=normprojzu2+normprojwu2
52 40 45 51 3eqtr4d zCwCuzwSzw=Sz+Sw
53 52 3exp1 zCwCuzwSzw=Sz+Sw
54 53 com3r uzCwCzwSzw=Sz+Sw
55 54 adantr unormu=1zCwCzwSzw=Sz+Sw
56 55 ralrimdv unormu=1zCwCzwSzw=Sz+Sw
57 56 ralrimiv unormu=1zCwCzwSzw=Sz+Sw
58 isst SStatesS:C01S=1zCwCzwSzw=Sz+Sw
59 22 33 57 58 syl3anbrc unormu=1SStates