Metamath Proof Explorer


Theorem subfacval3

Description: Another closed form expression for the subfactorial. The expression |_( x + 1 / 2 ) is a way of saying "rounded to the nearest integer". (Contributed by Mario Carneiro, 23-Jan-2015)

Ref Expression
Hypotheses derang.d D=xFinf|f:x1-1 ontoxyxfyy
subfac.n S=n0D1n
Assertion subfacval3 NSN=N!e+12

Proof

Step Hyp Ref Expression
1 derang.d D=xFinf|f:x1-1 ontoxyxfyy
2 subfac.n S=n0D1n
3 nnnn0 NN0
4 1 2 subfacf S:00
5 4 ffvelcdmi N0SN0
6 3 5 syl NSN0
7 6 nn0zd NSN
8 7 zred NSN
9 faccl N0N!
10 3 9 syl NN!
11 10 nnred NN!
12 epr e+
13 rerpdivcl N!e+N!e
14 11 12 13 sylancl NN!e
15 halfre 12
16 readdcl N!e12N!e+12
17 14 15 16 sylancl NN!e+12
18 elnn1uz2 NN=1N2
19 fveq2 N=1N!=1!
20 fac1 1!=1
21 19 20 eqtrdi N=1N!=1
22 21 oveq1d N=1N!e=1e
23 fveq2 N=1SN=S1
24 1 2 subfac1 S1=0
25 23 24 eqtrdi N=1SN=0
26 22 25 oveq12d N=1N!eSN=1e0
27 rpreccl e+1e+
28 12 27 ax-mp 1e+
29 rpre 1e+1e
30 28 29 ax-mp 1e
31 30 recni 1e
32 31 subid1i 1e0=1e
33 26 32 eqtrdi N=1N!eSN=1e
34 33 fveq2d N=1N!eSN=1e
35 rpge0 1e+01e
36 28 35 ax-mp 01e
37 absid 1e01e1e=1e
38 30 36 37 mp2an 1e=1e
39 34 38 eqtrdi N=1N!eSN=1e
40 egt2lt3 2<ee<3
41 40 simpli 2<e
42 2re 2
43 ere e
44 2pos 0<2
45 epos 0<e
46 42 43 44 45 ltrecii 2<e1e<12
47 41 46 mpbi 1e<12
48 39 47 eqbrtrdi N=1N!eSN<12
49 eluz2nn N2N
50 14 8 resubcld NN!eSN
51 50 recnd NN!eSN
52 49 51 syl N2N!eSN
53 52 abscld N2N!eSN
54 49 nnrecred N21N
55 15 a1i N212
56 1 2 subfaclim NN!eSN<1N
57 49 56 syl N2N!eSN<1N
58 eluzle N22N
59 nnre NN
60 nngt0 N0<N
61 lerec 20<2N0<N2N1N12
62 42 44 61 mpanl12 N0<N2N1N12
63 59 60 62 syl2anc N2N1N12
64 49 63 syl N22N1N12
65 58 64 mpbid N21N12
66 53 54 55 57 65 ltletrd N2N!eSN<12
67 48 66 jaoi N=1N2N!eSN<12
68 18 67 sylbi NN!eSN<12
69 15 a1i N12
70 14 8 69 absdifltd NN!eSN<12SN12<N!eN!e<SN+12
71 68 70 mpbid NSN12<N!eN!e<SN+12
72 71 simpld NSN12<N!e
73 8 69 14 ltsubaddd NSN12<N!eSN<N!e+12
74 72 73 mpbid NSN<N!e+12
75 8 17 74 ltled NSNN!e+12
76 readdcl SN12SN+12
77 8 15 76 sylancl NSN+12
78 71 simprd NN!e<SN+12
79 14 77 69 78 ltadd1dd NN!e+12<SN+12+12
80 8 recnd NSN
81 69 recnd N12
82 80 81 81 addassd NSN+12+12=SN+12+12
83 ax-1cn 1
84 2halves 112+12=1
85 83 84 ax-mp 12+12=1
86 85 oveq2i SN+12+12=SN+1
87 82 86 eqtrdi NSN+12+12=SN+1
88 79 87 breqtrd NN!e+12<SN+1
89 flbi N!e+12SNN!e+12=SNSNN!e+12N!e+12<SN+1
90 17 7 89 syl2anc NN!e+12=SNSNN!e+12N!e+12<SN+1
91 75 88 90 mpbir2and NN!e+12=SN
92 91 eqcomd NSN=N!e+12