Description: The scalars in a polynomial algebra are in the subring algebra iff the scalar value is in the subring. (Contributed by Mario Carneiro, 4-Jul-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | subrgascl.p | |
|
subrgascl.a | |
||
subrgascl.h | |
||
subrgascl.u | |
||
subrgascl.i | |
||
subrgascl.r | |
||
subrgasclcl.b | |
||
subrgasclcl.k | |
||
subrgasclcl.x | |
||
Assertion | subrgasclcl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrgascl.p | |
|
2 | subrgascl.a | |
|
3 | subrgascl.h | |
|
4 | subrgascl.u | |
|
5 | subrgascl.i | |
|
6 | subrgascl.r | |
|
7 | subrgasclcl.b | |
|
8 | subrgasclcl.k | |
|
9 | subrgasclcl.x | |
|
10 | iftrue | |
|
11 | 10 | eleq1d | |
12 | eqid | |
|
13 | eqid | |
|
14 | eqid | |
|
15 | eqid | |
|
16 | eqid | |
|
17 | subrgrcl | |
|
18 | 6 17 | syl | |
19 | 1 14 16 8 2 5 18 9 | mplascl | |
20 | 19 | adantr | |
21 | 3 | subrgring | |
22 | 6 21 | syl | |
23 | 12 4 7 5 22 | mplsubrg | |
24 | 15 | subrgss | |
25 | 23 24 | syl | |
26 | 25 | sselda | |
27 | 20 26 | eqeltrrd | |
28 | 12 13 14 15 27 | psrelbas | |
29 | eqid | |
|
30 | 29 | fmpt | |
31 | 28 30 | sylibr | |
32 | 5 | adantr | |
33 | 14 | psrbag0 | |
34 | 32 33 | syl | |
35 | 11 31 34 | rspcdva | |
36 | 3 | subrgbas | |
37 | 6 36 | syl | |
38 | 37 | adantr | |
39 | 35 38 | eleqtrrd | |
40 | eqid | |
|
41 | 1 2 3 4 5 6 40 | subrgascl | |
42 | 41 | fveq1d | |
43 | fvres | |
|
44 | 42 43 | sylan9eq | |
45 | eqid | |
|
46 | 4 | mplring | |
47 | 4 | mpllmod | |
48 | eqid | |
|
49 | 40 45 46 47 48 7 | asclf | |
50 | 5 22 49 | syl2anc | |
51 | 50 | adantr | |
52 | 4 5 22 | mplsca | |
53 | 52 | fveq2d | |
54 | 37 53 | eqtrd | |
55 | 54 | eleq2d | |
56 | 55 | biimpa | |
57 | 51 56 | ffvelcdmd | |
58 | 44 57 | eqeltrrd | |
59 | 39 58 | impbida | |