Metamath Proof Explorer


Theorem subrgasclcl

Description: The scalars in a polynomial algebra are in the subring algebra iff the scalar value is in the subring. (Contributed by Mario Carneiro, 4-Jul-2015)

Ref Expression
Hypotheses subrgascl.p P=ImPolyR
subrgascl.a A=algScP
subrgascl.h H=R𝑠T
subrgascl.u U=ImPolyH
subrgascl.i φIW
subrgascl.r φTSubRingR
subrgasclcl.b B=BaseU
subrgasclcl.k K=BaseR
subrgasclcl.x φXK
Assertion subrgasclcl φAXBXT

Proof

Step Hyp Ref Expression
1 subrgascl.p P=ImPolyR
2 subrgascl.a A=algScP
3 subrgascl.h H=R𝑠T
4 subrgascl.u U=ImPolyH
5 subrgascl.i φIW
6 subrgascl.r φTSubRingR
7 subrgasclcl.b B=BaseU
8 subrgasclcl.k K=BaseR
9 subrgasclcl.x φXK
10 iftrue x=I×0ifx=I×0X0R=X
11 10 eleq1d x=I×0ifx=I×0X0RBaseHXBaseH
12 eqid ImPwSerH=ImPwSerH
13 eqid BaseH=BaseH
14 eqid f0I|f-1Fin=f0I|f-1Fin
15 eqid BaseImPwSerH=BaseImPwSerH
16 eqid 0R=0R
17 subrgrcl TSubRingRRRing
18 6 17 syl φRRing
19 1 14 16 8 2 5 18 9 mplascl φAX=xf0I|f-1Finifx=I×0X0R
20 19 adantr φAXBAX=xf0I|f-1Finifx=I×0X0R
21 3 subrgring TSubRingRHRing
22 6 21 syl φHRing
23 12 4 7 5 22 mplsubrg φBSubRingImPwSerH
24 15 subrgss BSubRingImPwSerHBBaseImPwSerH
25 23 24 syl φBBaseImPwSerH
26 25 sselda φAXBAXBaseImPwSerH
27 20 26 eqeltrrd φAXBxf0I|f-1Finifx=I×0X0RBaseImPwSerH
28 12 13 14 15 27 psrelbas φAXBxf0I|f-1Finifx=I×0X0R:f0I|f-1FinBaseH
29 eqid xf0I|f-1Finifx=I×0X0R=xf0I|f-1Finifx=I×0X0R
30 29 fmpt xf0I|f-1Finifx=I×0X0RBaseHxf0I|f-1Finifx=I×0X0R:f0I|f-1FinBaseH
31 28 30 sylibr φAXBxf0I|f-1Finifx=I×0X0RBaseH
32 5 adantr φAXBIW
33 14 psrbag0 IWI×0f0I|f-1Fin
34 32 33 syl φAXBI×0f0I|f-1Fin
35 11 31 34 rspcdva φAXBXBaseH
36 3 subrgbas TSubRingRT=BaseH
37 6 36 syl φT=BaseH
38 37 adantr φAXBT=BaseH
39 35 38 eleqtrrd φAXBXT
40 eqid algScU=algScU
41 1 2 3 4 5 6 40 subrgascl φalgScU=AT
42 41 fveq1d φalgScUX=ATX
43 fvres XTATX=AX
44 42 43 sylan9eq φXTalgScUX=AX
45 eqid ScalarU=ScalarU
46 4 mplring IWHRingURing
47 4 mpllmod IWHRingULMod
48 eqid BaseScalarU=BaseScalarU
49 40 45 46 47 48 7 asclf IWHRingalgScU:BaseScalarUB
50 5 22 49 syl2anc φalgScU:BaseScalarUB
51 50 adantr φXTalgScU:BaseScalarUB
52 4 5 22 mplsca φH=ScalarU
53 52 fveq2d φBaseH=BaseScalarU
54 37 53 eqtrd φT=BaseScalarU
55 54 eleq2d φXTXBaseScalarU
56 55 biimpa φXTXBaseScalarU
57 51 56 ffvelcdmd φXTalgScUXB
58 44 57 eqeltrrd φXTAXB
59 39 58 impbida φAXBXT