Metamath Proof Explorer


Theorem suppovss

Description: A bound for the support of an operation. (Contributed by Thierry Arnoux, 19-Jul-2023)

Ref Expression
Hypotheses suppovss.f F=xA,yBC
suppovss.g G=xAyBC
suppovss.a φAV
suppovss.b φBW
suppovss.z φZD
suppovss.1 φxAyBCD
Assertion suppovss φFsuppZsuppB×ZG×kGsuppB×ZsuppZGk

Proof

Step Hyp Ref Expression
1 suppovss.f F=xA,yBC
2 suppovss.g G=xAyBC
3 suppovss.a φAV
4 suppovss.b φBW
5 suppovss.z φZD
6 suppovss.1 φxAyBCD
7 6 ralrimivva φxAyBCD
8 1 fmpo xAyBCDF:A×BD
9 7 8 sylib φF:A×BD
10 simpr φxAsuppB×ZGyBz=xyz=xy
11 10 fveq2d φxAsuppB×ZGyBz=xyFz=Fxy
12 df-ov xFy=Fxy
13 simpllr φxAsuppB×ZGyBz=xyxAsuppB×ZG
14 13 eldifad φxAsuppB×ZGyBz=xyxA
15 simplr φxAsuppB×ZGyBz=xyyB
16 simplll φxAsuppB×ZGyBz=xyφ
17 16 14 15 6 syl12anc φxAsuppB×ZGyBz=xyCD
18 1 ovmpt4g xAyBCDxFy=C
19 14 15 17 18 syl3anc φxAsuppB×ZGyBz=xyxFy=C
20 12 19 eqtr3id φxAsuppB×ZGyBz=xyFxy=C
21 4 adantr φxABW
22 21 mptexd φxAyBCV
23 22 2 fmptd φG:AV
24 ssidd φGsuppB×ZGsuppB×Z
25 snex ZV
26 25 a1i φZV
27 4 26 xpexd φB×ZV
28 23 24 3 27 suppssr φxAsuppB×ZGGx=B×Z
29 28 fveq1d φxAsuppB×ZGGxy=B×Zy
30 16 13 29 syl2anc φxAsuppB×ZGyBz=xyGxy=B×Zy
31 simpr φxAxA
32 2 fvmpt2 xAyBCVGx=yBC
33 31 22 32 syl2anc φxAGx=yBC
34 6 anassrs φxAyBCD
35 33 34 fvmpt2d φxAyBGxy=C
36 16 14 15 35 syl21anc φxAsuppB×ZGyBz=xyGxy=C
37 16 5 syl φxAsuppB×ZGyBz=xyZD
38 fvconst2g ZDyBB×Zy=Z
39 37 15 38 syl2anc φxAsuppB×ZGyBz=xyB×Zy=Z
40 30 36 39 3eqtr3d φxAsuppB×ZGyBz=xyC=Z
41 11 20 40 3eqtrd φxAsuppB×ZGyBz=xyFz=Z
42 41 adantl3r φzAsuppB×ZG×BxAsuppB×ZGyBz=xyFz=Z
43 elxp2 zAsuppB×ZG×BxAsuppB×ZGyBz=xy
44 43 biimpi zAsuppB×ZG×BxAsuppB×ZGyBz=xy
45 44 adantl φzAsuppB×ZG×BxAsuppB×ZGyBz=xy
46 42 45 r19.29vva φzAsuppB×ZG×BFz=Z
47 46 adantlr φzA×BsuppB×ZG×kGsuppB×ZsuppZGkzAsuppB×ZG×BFz=Z
48 simpr φxAyBkGsuppB×ZsuppZGkz=xyz=xy
49 48 fveq2d φxAyBkGsuppB×ZsuppZGkz=xyFz=Fxy
50 simpllr φxAyBkGsuppB×ZsuppZGkz=xyxA
51 simplr φxAyBkGsuppB×ZsuppZGkz=xyyBkGsuppB×ZsuppZGk
52 51 eldifad φxAyBkGsuppB×ZsuppZGkz=xyyB
53 simplll φxAyBkGsuppB×ZsuppZGkz=xyφ
54 53 50 52 6 syl12anc φxAyBkGsuppB×ZsuppZGkz=xyCD
55 50 52 54 18 syl3anc φxAyBkGsuppB×ZsuppZGkz=xyxFy=C
56 12 55 eqtr3id φxAyBkGsuppB×ZsuppZGkz=xyFxy=C
57 53 50 52 35 syl21anc φxAyBkGsuppB×ZsuppZGkz=xyGxy=C
58 fvexd φxAyBGxyV
59 34 33 58 fmpt2d φxAGx:BV
60 ssiun2 xAGxsuppZxAsuppZGx
61 60 adantl φxAGxsuppZxAsuppZGx
62 fveq2 x=kGx=Gk
63 62 oveq1d x=kGxsuppZ=GksuppZ
64 63 cbviunv xAsuppZGx=kAsuppZGk
65 61 64 sseqtrdi φxAGxsuppZkAsuppZGk
66 simpl φkAsuppB×ZGφ
67 simpr φkAsuppB×ZGkAsuppB×ZG
68 67 eldifad φkAsuppB×ZGkA
69 23 24 3 27 suppssr φkAsuppB×ZGGk=B×Z
70 eleq1w x=kxAkA
71 70 anbi2d x=kφxAφkA
72 62 fneq1d x=kGxFnBGkFnB
73 71 72 imbi12d x=kφxAGxFnBφkAGkFnB
74 59 ffnd φxAGxFnB
75 73 74 chvarvv φkAGkFnB
76 4 adantr φkABW
77 5 adantr φkAZD
78 fnsuppeq0 GkFnBBWZDGksuppZ=Gk=B×Z
79 75 76 77 78 syl3anc φkAGksuppZ=Gk=B×Z
80 79 biimpar φkAGk=B×ZGksuppZ=
81 66 68 69 80 syl21anc φkAsuppB×ZGGksuppZ=
82 81 ralrimiva φkAsuppB×ZGGksuppZ=
83 nfcv _kAsuppB×ZG
84 83 iunxdif3 kAsuppB×ZGGksuppZ=kAAsuppB×ZGsuppZGk=kAsuppZGk
85 82 84 syl φkAAsuppB×ZGsuppZGk=kAsuppZGk
86 dfin4 AsuppB×ZG=AAsuppB×ZG
87 suppssdm GsuppB×ZdomG
88 87 23 fssdm φGsuppB×ZA
89 sseqin2 GsuppB×ZAAsuppB×ZG=GsuppB×Z
90 88 89 sylib φAsuppB×ZG=GsuppB×Z
91 86 90 eqtr3id φAAsuppB×ZG=GsuppB×Z
92 91 iuneq1d φkAAsuppB×ZGsuppZGk=kGsuppB×ZsuppZGk
93 85 92 eqtr3d φkAsuppZGk=kGsuppB×ZsuppZGk
94 93 adantr φxAkAsuppZGk=kGsuppB×ZsuppZGk
95 65 94 sseqtrd φxAGxsuppZkGsuppB×ZsuppZGk
96 5 adantr φxAZD
97 59 95 21 96 suppssr φxAyBkGsuppB×ZsuppZGkGxy=Z
98 97 adantr φxAyBkGsuppB×ZsuppZGkz=xyGxy=Z
99 57 98 eqtr3d φxAyBkGsuppB×ZsuppZGkz=xyC=Z
100 49 56 99 3eqtrd φxAyBkGsuppB×ZsuppZGkz=xyFz=Z
101 100 adantl3r φzA×BkGsuppB×ZsuppZGkxAyBkGsuppB×ZsuppZGkz=xyFz=Z
102 elxp2 zA×BkGsuppB×ZsuppZGkxAyBkGsuppB×ZsuppZGkz=xy
103 102 biimpi zA×BkGsuppB×ZsuppZGkxAyBkGsuppB×ZsuppZGkz=xy
104 103 adantl φzA×BkGsuppB×ZsuppZGkxAyBkGsuppB×ZsuppZGkz=xy
105 101 104 r19.29vva φzA×BkGsuppB×ZsuppZGkFz=Z
106 105 adantlr φzA×BsuppB×ZG×kGsuppB×ZsuppZGkzA×BkGsuppB×ZsuppZGkFz=Z
107 simpr φzA×BsuppB×ZG×kGsuppB×ZsuppZGkzA×BsuppB×ZG×kGsuppB×ZsuppZGk
108 difxp A×BsuppB×ZG×kGsuppB×ZsuppZGk=AsuppB×ZG×BA×BkGsuppB×ZsuppZGk
109 107 108 eleqtrdi φzA×BsuppB×ZG×kGsuppB×ZsuppZGkzAsuppB×ZG×BA×BkGsuppB×ZsuppZGk
110 elun zAsuppB×ZG×BA×BkGsuppB×ZsuppZGkzAsuppB×ZG×BzA×BkGsuppB×ZsuppZGk
111 109 110 sylib φzA×BsuppB×ZG×kGsuppB×ZsuppZGkzAsuppB×ZG×BzA×BkGsuppB×ZsuppZGk
112 47 106 111 mpjaodan φzA×BsuppB×ZG×kGsuppB×ZsuppZGkFz=Z
113 9 112 suppss φFsuppZsuppB×ZG×kGsuppB×ZsuppZGk