Step |
Hyp |
Ref |
Expression |
1 |
|
suppovss.f |
|
2 |
|
suppovss.g |
|
3 |
|
suppovss.a |
|
4 |
|
suppovss.b |
|
5 |
|
suppovss.z |
|
6 |
|
suppovss.1 |
|
7 |
6
|
ralrimivva |
|
8 |
1
|
fmpo |
|
9 |
7 8
|
sylib |
|
10 |
|
simpr |
|
11 |
10
|
fveq2d |
|
12 |
|
df-ov |
|
13 |
|
simpllr |
|
14 |
13
|
eldifad |
|
15 |
|
simplr |
|
16 |
|
simplll |
|
17 |
16 14 15 6
|
syl12anc |
|
18 |
1
|
ovmpt4g |
|
19 |
14 15 17 18
|
syl3anc |
|
20 |
12 19
|
eqtr3id |
|
21 |
4
|
adantr |
|
22 |
21
|
mptexd |
|
23 |
22 2
|
fmptd |
|
24 |
|
ssidd |
|
25 |
|
snex |
|
26 |
25
|
a1i |
|
27 |
4 26
|
xpexd |
|
28 |
23 24 3 27
|
suppssr |
|
29 |
28
|
fveq1d |
|
30 |
16 13 29
|
syl2anc |
|
31 |
|
simpr |
|
32 |
2
|
fvmpt2 |
|
33 |
31 22 32
|
syl2anc |
|
34 |
6
|
anassrs |
|
35 |
33 34
|
fvmpt2d |
|
36 |
16 14 15 35
|
syl21anc |
|
37 |
16 5
|
syl |
|
38 |
|
fvconst2g |
|
39 |
37 15 38
|
syl2anc |
|
40 |
30 36 39
|
3eqtr3d |
|
41 |
11 20 40
|
3eqtrd |
|
42 |
41
|
adantl3r |
|
43 |
|
elxp2 |
|
44 |
43
|
biimpi |
|
45 |
44
|
adantl |
|
46 |
42 45
|
r19.29vva |
|
47 |
46
|
adantlr |
|
48 |
|
simpr |
|
49 |
48
|
fveq2d |
|
50 |
|
simpllr |
|
51 |
|
simplr |
|
52 |
51
|
eldifad |
|
53 |
|
simplll |
|
54 |
53 50 52 6
|
syl12anc |
|
55 |
50 52 54 18
|
syl3anc |
|
56 |
12 55
|
eqtr3id |
|
57 |
53 50 52 35
|
syl21anc |
|
58 |
|
fvexd |
|
59 |
34 33 58
|
fmpt2d |
|
60 |
|
ssiun2 |
|
61 |
60
|
adantl |
|
62 |
|
fveq2 |
|
63 |
62
|
oveq1d |
|
64 |
63
|
cbviunv |
|
65 |
61 64
|
sseqtrdi |
|
66 |
|
simpl |
|
67 |
|
simpr |
|
68 |
67
|
eldifad |
|
69 |
23 24 3 27
|
suppssr |
|
70 |
|
eleq1w |
|
71 |
70
|
anbi2d |
|
72 |
62
|
fneq1d |
|
73 |
71 72
|
imbi12d |
|
74 |
59
|
ffnd |
|
75 |
73 74
|
chvarvv |
|
76 |
4
|
adantr |
|
77 |
5
|
adantr |
|
78 |
|
fnsuppeq0 |
|
79 |
75 76 77 78
|
syl3anc |
|
80 |
79
|
biimpar |
|
81 |
66 68 69 80
|
syl21anc |
|
82 |
81
|
ralrimiva |
|
83 |
|
nfcv |
|
84 |
83
|
iunxdif3 |
|
85 |
82 84
|
syl |
|
86 |
|
dfin4 |
|
87 |
|
suppssdm |
|
88 |
87 23
|
fssdm |
|
89 |
|
sseqin2 |
|
90 |
88 89
|
sylib |
|
91 |
86 90
|
eqtr3id |
|
92 |
91
|
iuneq1d |
|
93 |
85 92
|
eqtr3d |
|
94 |
93
|
adantr |
|
95 |
65 94
|
sseqtrd |
|
96 |
5
|
adantr |
|
97 |
59 95 21 96
|
suppssr |
|
98 |
97
|
adantr |
|
99 |
57 98
|
eqtr3d |
|
100 |
49 56 99
|
3eqtrd |
|
101 |
100
|
adantl3r |
|
102 |
|
elxp2 |
|
103 |
102
|
biimpi |
|
104 |
103
|
adantl |
|
105 |
101 104
|
r19.29vva |
|
106 |
105
|
adantlr |
|
107 |
|
simpr |
|
108 |
|
difxp |
|
109 |
107 108
|
eleqtrdi |
|
110 |
|
elun |
|
111 |
109 110
|
sylib |
|
112 |
47 106 111
|
mpjaodan |
|
113 |
9 112
|
suppss |
|