Description: The product sigma-algebra ( BrSiga sX BrSiga ) is the Borel algebra on ( RR X. RR ) See example 5.1.1 of Cohn p. 143 . (Contributed by Thierry Arnoux, 10-Oct-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | sxbrsiga.0 | |
|
Assertion | sxbrsiga | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sxbrsiga.0 | |
|
2 | brsigarn | |
|
3 | eqid | |
|
4 | 3 | sxval | |
5 | 2 2 4 | mp2an | |
6 | br2base | |
|
7 | 1 | tpr2uni | |
8 | 6 7 | eqtr4i | |
9 | brsigasspwrn | |
|
10 | 9 | sseli | |
11 | 10 | elpwid | |
12 | 9 | sseli | |
13 | 12 | elpwid | |
14 | xpinpreima2 | |
|
15 | 11 13 14 | syl2an | |
16 | 1 | tpr2tp | |
17 | sigagensiga | |
|
18 | 16 17 | ax-mp | |
19 | elrnsiga | |
|
20 | 18 19 | mp1i | |
21 | 16 | a1i | |
22 | 21 | sgsiga | |
23 | elrnsiga | |
|
24 | 2 23 | mp1i | |
25 | retopon | |
|
26 | 1 25 | eqeltri | |
27 | tx1cn | |
|
28 | 26 26 27 | mp2an | |
29 | 28 | a1i | |
30 | eqidd | |
|
31 | df-brsiga | |
|
32 | 1 | fveq2i | |
33 | 31 32 | eqtr4i | |
34 | 33 | a1i | |
35 | 29 30 34 | cnmbfm | |
36 | id | |
|
37 | 22 24 35 36 | mbfmcnvima | |
38 | 37 | adantr | |
39 | 16 | a1i | |
40 | 39 | sgsiga | |
41 | 2 23 | mp1i | |
42 | tx2cn | |
|
43 | 26 26 42 | mp2an | |
44 | 43 | a1i | |
45 | eqidd | |
|
46 | 33 | a1i | |
47 | 44 45 46 | cnmbfm | |
48 | id | |
|
49 | 40 41 47 48 | mbfmcnvima | |
50 | 49 | adantl | |
51 | inelsiga | |
|
52 | 20 38 50 51 | syl3anc | |
53 | 15 52 | eqeltrd | |
54 | 53 | rgen2 | |
55 | eqid | |
|
56 | 55 | rnmposs | |
57 | 54 56 | ax-mp | |
58 | sigagenss2 | |
|
59 | 8 57 16 58 | mp3an | |
60 | 5 59 | eqsstri | |
61 | 1 | sxbrsigalem6 | |
62 | 60 61 | eqssi | |