Metamath Proof Explorer


Theorem sxbrsiga

Description: The product sigma-algebra ( BrSiga sX BrSiga ) is the Borel algebra on ( RR X. RR ) See example 5.1.1 of Cohn p. 143 . (Contributed by Thierry Arnoux, 10-Oct-2017)

Ref Expression
Hypothesis sxbrsiga.0 J=topGenran.
Assertion sxbrsiga 𝔅×s𝔅=𝛔J×tJ

Proof

Step Hyp Ref Expression
1 sxbrsiga.0 J=topGenran.
2 brsigarn 𝔅sigAlgebra
3 eqid rane𝔅,f𝔅e×f=rane𝔅,f𝔅e×f
4 3 sxval 𝔅sigAlgebra𝔅sigAlgebra𝔅×s𝔅=𝛔rane𝔅,f𝔅e×f
5 2 2 4 mp2an 𝔅×s𝔅=𝛔rane𝔅,f𝔅e×f
6 br2base rane𝔅,f𝔅e×f=2
7 1 tpr2uni J×tJ=2
8 6 7 eqtr4i rane𝔅,f𝔅e×f=J×tJ
9 brsigasspwrn 𝔅𝒫
10 9 sseli e𝔅e𝒫
11 10 elpwid e𝔅e
12 9 sseli f𝔅f𝒫
13 12 elpwid f𝔅f
14 xpinpreima2 efe×f=1st2-1e2nd2-1f
15 11 13 14 syl2an e𝔅f𝔅e×f=1st2-1e2nd2-1f
16 1 tpr2tp J×tJTopOn2
17 sigagensiga J×tJTopOn2𝛔J×tJsigAlgebraJ×tJ
18 16 17 ax-mp 𝛔J×tJsigAlgebraJ×tJ
19 elrnsiga 𝛔J×tJsigAlgebraJ×tJ𝛔J×tJransigAlgebra
20 18 19 mp1i e𝔅f𝔅𝛔J×tJransigAlgebra
21 16 a1i e𝔅J×tJTopOn2
22 21 sgsiga e𝔅𝛔J×tJransigAlgebra
23 elrnsiga 𝔅sigAlgebra𝔅ransigAlgebra
24 2 23 mp1i e𝔅𝔅ransigAlgebra
25 retopon topGenran.TopOn
26 1 25 eqeltri JTopOn
27 tx1cn JTopOnJTopOn1st2J×tJCnJ
28 26 26 27 mp2an 1st2J×tJCnJ
29 28 a1i e𝔅1st2J×tJCnJ
30 eqidd e𝔅𝛔J×tJ=𝛔J×tJ
31 df-brsiga 𝔅=𝛔topGenran.
32 1 fveq2i 𝛔J=𝛔topGenran.
33 31 32 eqtr4i 𝔅=𝛔J
34 33 a1i e𝔅𝔅=𝛔J
35 29 30 34 cnmbfm e𝔅1st2𝛔J×tJMblFnμ𝔅
36 id e𝔅e𝔅
37 22 24 35 36 mbfmcnvima e𝔅1st2-1e𝛔J×tJ
38 37 adantr e𝔅f𝔅1st2-1e𝛔J×tJ
39 16 a1i f𝔅J×tJTopOn2
40 39 sgsiga f𝔅𝛔J×tJransigAlgebra
41 2 23 mp1i f𝔅𝔅ransigAlgebra
42 tx2cn JTopOnJTopOn2nd2J×tJCnJ
43 26 26 42 mp2an 2nd2J×tJCnJ
44 43 a1i f𝔅2nd2J×tJCnJ
45 eqidd f𝔅𝛔J×tJ=𝛔J×tJ
46 33 a1i f𝔅𝔅=𝛔J
47 44 45 46 cnmbfm f𝔅2nd2𝛔J×tJMblFnμ𝔅
48 id f𝔅f𝔅
49 40 41 47 48 mbfmcnvima f𝔅2nd2-1f𝛔J×tJ
50 49 adantl e𝔅f𝔅2nd2-1f𝛔J×tJ
51 inelsiga 𝛔J×tJransigAlgebra1st2-1e𝛔J×tJ2nd2-1f𝛔J×tJ1st2-1e2nd2-1f𝛔J×tJ
52 20 38 50 51 syl3anc e𝔅f𝔅1st2-1e2nd2-1f𝛔J×tJ
53 15 52 eqeltrd e𝔅f𝔅e×f𝛔J×tJ
54 53 rgen2 e𝔅f𝔅e×f𝛔J×tJ
55 eqid e𝔅,f𝔅e×f=e𝔅,f𝔅e×f
56 55 rnmposs e𝔅f𝔅e×f𝛔J×tJrane𝔅,f𝔅e×f𝛔J×tJ
57 54 56 ax-mp rane𝔅,f𝔅e×f𝛔J×tJ
58 sigagenss2 rane𝔅,f𝔅e×f=J×tJrane𝔅,f𝔅e×f𝛔J×tJJ×tJTopOn2𝛔rane𝔅,f𝔅e×f𝛔J×tJ
59 8 57 16 58 mp3an 𝛔rane𝔅,f𝔅e×f𝛔J×tJ
60 5 59 eqsstri 𝔅×s𝔅𝛔J×tJ
61 1 sxbrsigalem6 𝛔J×tJ𝔅×s𝔅
62 60 61 eqssi 𝔅×s𝔅=𝛔J×tJ