Description: The mapping of a permutation of a set fixing an element to a permutation of the set without the fixed element is a 1-1 function. (Contributed by AV, 4-Jan-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | symgfixf.p | |
|
symgfixf.q | |
||
symgfixf.s | |
||
symgfixf.h | |
||
Assertion | symgfixf1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symgfixf.p | |
|
2 | symgfixf.q | |
|
3 | symgfixf.s | |
|
4 | symgfixf.h | |
|
5 | 1 2 3 4 | symgfixf | |
6 | 4 | fvtresfn | |
7 | 4 | fvtresfn | |
8 | 6 7 | eqeqan12d | |
9 | 8 | adantl | |
10 | 1 2 | symgfixelq | |
11 | 10 | elv | |
12 | 1 2 | symgfixelq | |
13 | 12 | elv | |
14 | 11 13 | anbi12i | |
15 | f1ofn | |
|
16 | 15 | adantr | |
17 | f1ofn | |
|
18 | 17 | adantr | |
19 | 16 18 | anim12i | |
20 | difss | |
|
21 | 19 20 | jctir | |
22 | 21 | adantl | |
23 | fvreseq | |
|
24 | 22 23 | syl | |
25 | f1of | |
|
26 | 25 | adantr | |
27 | f1of | |
|
28 | 27 | adantr | |
29 | fdm | |
|
30 | fdm | |
|
31 | 29 30 | anim12i | |
32 | 26 28 31 | syl2an | |
33 | eqtr3 | |
|
34 | 32 33 | syl | |
35 | 34 | ad2antlr | |
36 | simpr | |
|
37 | eqtr3 | |
|
38 | 37 | ad2ant2l | |
39 | 38 | ad2antlr | |
40 | fveq2 | |
|
41 | fveq2 | |
|
42 | 40 41 | eqeq12d | |
43 | 42 | ralunsn | |
44 | 43 | adantr | |
45 | 44 | adantr | |
46 | 36 39 45 | mpbir2and | |
47 | f1odm | |
|
48 | 47 | adantr | |
49 | 48 | adantr | |
50 | difsnid | |
|
51 | 50 | eqcomd | |
52 | 49 51 | sylan9eqr | |
53 | 52 | adantr | |
54 | 53 | raleqdv | |
55 | 46 54 | mpbird | |
56 | f1ofun | |
|
57 | 56 | adantr | |
58 | f1ofun | |
|
59 | 58 | adantr | |
60 | 57 59 | anim12i | |
61 | 60 | ad2antlr | |
62 | eqfunfv | |
|
63 | 61 62 | syl | |
64 | 35 55 63 | mpbir2and | |
65 | 64 | ex | |
66 | 24 65 | sylbid | |
67 | 14 66 | sylan2b | |
68 | 9 67 | sylbid | |
69 | 68 | ralrimivva | |
70 | dff13 | |
|
71 | 5 69 70 | sylanbrc | |