Metamath Proof Explorer


Theorem symgfixf1

Description: The mapping of a permutation of a set fixing an element to a permutation of the set without the fixed element is a 1-1 function. (Contributed by AV, 4-Jan-2019)

Ref Expression
Hypotheses symgfixf.p P=BaseSymGrpN
symgfixf.q Q=qP|qK=K
symgfixf.s S=BaseSymGrpNK
symgfixf.h H=qQqNK
Assertion symgfixf1 KNH:Q1-1S

Proof

Step Hyp Ref Expression
1 symgfixf.p P=BaseSymGrpN
2 symgfixf.q Q=qP|qK=K
3 symgfixf.s S=BaseSymGrpNK
4 symgfixf.h H=qQqNK
5 1 2 3 4 symgfixf KNH:QS
6 4 fvtresfn gQHg=gNK
7 4 fvtresfn pQHp=pNK
8 6 7 eqeqan12d gQpQHg=HpgNK=pNK
9 8 adantl KNgQpQHg=HpgNK=pNK
10 1 2 symgfixelq gVgQg:N1-1 ontoNgK=K
11 10 elv gQg:N1-1 ontoNgK=K
12 1 2 symgfixelq pVpQp:N1-1 ontoNpK=K
13 12 elv pQp:N1-1 ontoNpK=K
14 11 13 anbi12i gQpQg:N1-1 ontoNgK=Kp:N1-1 ontoNpK=K
15 f1ofn g:N1-1 ontoNgFnN
16 15 adantr g:N1-1 ontoNgK=KgFnN
17 f1ofn p:N1-1 ontoNpFnN
18 17 adantr p:N1-1 ontoNpK=KpFnN
19 16 18 anim12i g:N1-1 ontoNgK=Kp:N1-1 ontoNpK=KgFnNpFnN
20 difss NKN
21 19 20 jctir g:N1-1 ontoNgK=Kp:N1-1 ontoNpK=KgFnNpFnNNKN
22 21 adantl KNg:N1-1 ontoNgK=Kp:N1-1 ontoNpK=KgFnNpFnNNKN
23 fvreseq gFnNpFnNNKNgNK=pNKiNKgi=pi
24 22 23 syl KNg:N1-1 ontoNgK=Kp:N1-1 ontoNpK=KgNK=pNKiNKgi=pi
25 f1of g:N1-1 ontoNg:NN
26 25 adantr g:N1-1 ontoNgK=Kg:NN
27 f1of p:N1-1 ontoNp:NN
28 27 adantr p:N1-1 ontoNpK=Kp:NN
29 fdm g:NNdomg=N
30 fdm p:NNdomp=N
31 29 30 anim12i g:NNp:NNdomg=Ndomp=N
32 26 28 31 syl2an g:N1-1 ontoNgK=Kp:N1-1 ontoNpK=Kdomg=Ndomp=N
33 eqtr3 domg=Ndomp=Ndomg=domp
34 32 33 syl g:N1-1 ontoNgK=Kp:N1-1 ontoNpK=Kdomg=domp
35 34 ad2antlr KNg:N1-1 ontoNgK=Kp:N1-1 ontoNpK=KiNKgi=pidomg=domp
36 simpr KNg:N1-1 ontoNgK=Kp:N1-1 ontoNpK=KiNKgi=piiNKgi=pi
37 eqtr3 gK=KpK=KgK=pK
38 37 ad2ant2l g:N1-1 ontoNgK=Kp:N1-1 ontoNpK=KgK=pK
39 38 ad2antlr KNg:N1-1 ontoNgK=Kp:N1-1 ontoNpK=KiNKgi=pigK=pK
40 fveq2 i=Kgi=gK
41 fveq2 i=Kpi=pK
42 40 41 eqeq12d i=Kgi=pigK=pK
43 42 ralunsn KNiNKKgi=piiNKgi=pigK=pK
44 43 adantr KNg:N1-1 ontoNgK=Kp:N1-1 ontoNpK=KiNKKgi=piiNKgi=pigK=pK
45 44 adantr KNg:N1-1 ontoNgK=Kp:N1-1 ontoNpK=KiNKgi=piiNKKgi=piiNKgi=pigK=pK
46 36 39 45 mpbir2and KNg:N1-1 ontoNgK=Kp:N1-1 ontoNpK=KiNKgi=piiNKKgi=pi
47 f1odm g:N1-1 ontoNdomg=N
48 47 adantr g:N1-1 ontoNgK=Kdomg=N
49 48 adantr g:N1-1 ontoNgK=Kp:N1-1 ontoNpK=Kdomg=N
50 difsnid KNNKK=N
51 50 eqcomd KNN=NKK
52 49 51 sylan9eqr KNg:N1-1 ontoNgK=Kp:N1-1 ontoNpK=Kdomg=NKK
53 52 adantr KNg:N1-1 ontoNgK=Kp:N1-1 ontoNpK=KiNKgi=pidomg=NKK
54 53 raleqdv KNg:N1-1 ontoNgK=Kp:N1-1 ontoNpK=KiNKgi=piidomggi=piiNKKgi=pi
55 46 54 mpbird KNg:N1-1 ontoNgK=Kp:N1-1 ontoNpK=KiNKgi=piidomggi=pi
56 f1ofun g:N1-1 ontoNFung
57 56 adantr g:N1-1 ontoNgK=KFung
58 f1ofun p:N1-1 ontoNFunp
59 58 adantr p:N1-1 ontoNpK=KFunp
60 57 59 anim12i g:N1-1 ontoNgK=Kp:N1-1 ontoNpK=KFungFunp
61 60 ad2antlr KNg:N1-1 ontoNgK=Kp:N1-1 ontoNpK=KiNKgi=piFungFunp
62 eqfunfv FungFunpg=pdomg=dompidomggi=pi
63 61 62 syl KNg:N1-1 ontoNgK=Kp:N1-1 ontoNpK=KiNKgi=pig=pdomg=dompidomggi=pi
64 35 55 63 mpbir2and KNg:N1-1 ontoNgK=Kp:N1-1 ontoNpK=KiNKgi=pig=p
65 64 ex KNg:N1-1 ontoNgK=Kp:N1-1 ontoNpK=KiNKgi=pig=p
66 24 65 sylbid KNg:N1-1 ontoNgK=Kp:N1-1 ontoNpK=KgNK=pNKg=p
67 14 66 sylan2b KNgQpQgNK=pNKg=p
68 9 67 sylbid KNgQpQHg=Hpg=p
69 68 ralrimivva KNgQpQHg=Hpg=p
70 dff13 H:Q1-1SH:QSgQpQHg=Hpg=p
71 5 69 70 sylanbrc KNH:Q1-1S