| Step | Hyp | Ref | Expression | 
						
							| 1 |  | telgsums.b |  | 
						
							| 2 |  | telgsums.g |  | 
						
							| 3 |  | telgsums.m |  | 
						
							| 4 |  | telgsums.0 |  | 
						
							| 5 |  | telgsums.f |  | 
						
							| 6 |  | telgsums.s |  | 
						
							| 7 |  | telgsums.u |  | 
						
							| 8 |  | ablcmn |  | 
						
							| 9 | 2 8 | syl |  | 
						
							| 10 |  | ablgrp |  | 
						
							| 11 | 2 10 | syl |  | 
						
							| 12 | 11 | adantr |  | 
						
							| 13 |  | simpr |  | 
						
							| 14 | 5 | adantr |  | 
						
							| 15 |  | rspcsbela |  | 
						
							| 16 | 13 14 15 | syl2anc |  | 
						
							| 17 |  | peano2nn0 |  | 
						
							| 18 |  | rspcsbela |  | 
						
							| 19 | 17 5 18 | syl2anr |  | 
						
							| 20 | 1 3 | grpsubcl |  | 
						
							| 21 | 12 16 19 20 | syl3anc |  | 
						
							| 22 | 21 | ralrimiva |  | 
						
							| 23 |  | rspsbca |  | 
						
							| 24 |  | sbcimg |  | 
						
							| 25 |  | sbcbr2g |  | 
						
							| 26 |  | csbvarg |  | 
						
							| 27 | 26 | breq2d |  | 
						
							| 28 | 25 27 | bitrd |  | 
						
							| 29 |  | sbceq1g |  | 
						
							| 30 | 28 29 | imbi12d |  | 
						
							| 31 | 24 30 | bitrd |  | 
						
							| 32 | 31 | elv |  | 
						
							| 33 | 23 32 | sylib |  | 
						
							| 34 | 33 | expcom |  | 
						
							| 35 | 7 34 | syl |  | 
						
							| 36 | 35 | imp31 |  | 
						
							| 37 | 6 | nn0red |  | 
						
							| 38 | 37 | adantr |  | 
						
							| 39 | 38 | adantr |  | 
						
							| 40 |  | nn0re |  | 
						
							| 41 | 40 | ad2antlr |  | 
						
							| 42 | 17 | ad2antlr |  | 
						
							| 43 | 42 | nn0red |  | 
						
							| 44 |  | simpr |  | 
						
							| 45 | 41 | ltp1d |  | 
						
							| 46 | 39 41 43 44 45 | lttrd |  | 
						
							| 47 | 46 | ex |  | 
						
							| 48 |  | rspsbca |  | 
						
							| 49 |  | ovex |  | 
						
							| 50 |  | sbcimg |  | 
						
							| 51 |  | sbcbr2g |  | 
						
							| 52 |  | csbvarg |  | 
						
							| 53 | 52 | breq2d |  | 
						
							| 54 | 51 53 | bitrd |  | 
						
							| 55 |  | sbceq1g |  | 
						
							| 56 | 54 55 | imbi12d |  | 
						
							| 57 | 50 56 | bitrd |  | 
						
							| 58 | 49 57 | ax-mp |  | 
						
							| 59 | 48 58 | sylib |  | 
						
							| 60 | 17 7 59 | syl2anr |  | 
						
							| 61 | 47 60 | syld |  | 
						
							| 62 | 61 | imp |  | 
						
							| 63 | 36 62 | oveq12d |  | 
						
							| 64 | 12 | adantr |  | 
						
							| 65 | 1 4 | grpidcl |  | 
						
							| 66 | 1 4 3 | grpsubid |  | 
						
							| 67 | 64 65 66 | syl2anc2 |  | 
						
							| 68 | 63 67 | eqtrd |  | 
						
							| 69 | 68 | ex |  | 
						
							| 70 | 69 | ralrimiva |  | 
						
							| 71 | 1 4 9 22 6 70 | gsummptnn0fz |  | 
						
							| 72 |  | fzssuz |  | 
						
							| 73 | 72 | a1i |  | 
						
							| 74 |  | nn0uz |  | 
						
							| 75 | 73 74 | sseqtrrdi |  | 
						
							| 76 |  | ssralv |  | 
						
							| 77 | 75 5 76 | sylc |  | 
						
							| 78 | 1 2 3 6 77 | telgsumfz0s |  | 
						
							| 79 |  | peano2nn0 |  | 
						
							| 80 | 6 79 | syl |  | 
						
							| 81 | 37 | ltp1d |  | 
						
							| 82 |  | rspsbca |  | 
						
							| 83 |  | ovex |  | 
						
							| 84 |  | sbcimg |  | 
						
							| 85 |  | sbcbr2g |  | 
						
							| 86 |  | csbvarg |  | 
						
							| 87 | 86 | breq2d |  | 
						
							| 88 | 85 87 | bitrd |  | 
						
							| 89 |  | sbceq1g |  | 
						
							| 90 | 88 89 | imbi12d |  | 
						
							| 91 | 84 90 | bitrd |  | 
						
							| 92 | 83 91 | ax-mp |  | 
						
							| 93 | 82 92 | sylib |  | 
						
							| 94 | 93 | ex |  | 
						
							| 95 | 80 7 81 94 | syl3c |  | 
						
							| 96 | 95 | oveq2d |  | 
						
							| 97 |  | 0nn0 |  | 
						
							| 98 | 97 | a1i |  | 
						
							| 99 |  | rspcsbela |  | 
						
							| 100 | 98 5 99 | syl2anc |  | 
						
							| 101 | 1 4 3 | grpsubid1 |  | 
						
							| 102 | 11 100 101 | syl2anc |  | 
						
							| 103 | 96 102 | eqtrd |  | 
						
							| 104 | 71 78 103 | 3eqtrd |  |