Metamath Proof Explorer


Theorem telgsums

Description: Telescoping finitely supported group sum ranging over nonnegative integers, using explicit substitution. (Contributed by AV, 24-Oct-2019)

Ref Expression
Hypotheses telgsums.b B=BaseG
telgsums.g φGAbel
telgsums.m -˙=-G
telgsums.0 0˙=0G
telgsums.f φk0CB
telgsums.s φS0
telgsums.u φk0S<kC=0˙
Assertion telgsums φGi0i/kC-˙i+1/kC=0/kC

Proof

Step Hyp Ref Expression
1 telgsums.b B=BaseG
2 telgsums.g φGAbel
3 telgsums.m -˙=-G
4 telgsums.0 0˙=0G
5 telgsums.f φk0CB
6 telgsums.s φS0
7 telgsums.u φk0S<kC=0˙
8 ablcmn GAbelGCMnd
9 2 8 syl φGCMnd
10 ablgrp GAbelGGrp
11 2 10 syl φGGrp
12 11 adantr φi0GGrp
13 simpr φi0i0
14 5 adantr φi0k0CB
15 rspcsbela i0k0CBi/kCB
16 13 14 15 syl2anc φi0i/kCB
17 peano2nn0 i0i+10
18 rspcsbela i+10k0CBi+1/kCB
19 17 5 18 syl2anr φi0i+1/kCB
20 1 3 grpsubcl GGrpi/kCBi+1/kCBi/kC-˙i+1/kCB
21 12 16 19 20 syl3anc φi0i/kC-˙i+1/kCB
22 21 ralrimiva φi0i/kC-˙i+1/kCB
23 rspsbca i0k0S<kC=0˙[˙i/k]˙S<kC=0˙
24 sbcimg iV[˙i/k]˙S<kC=0˙[˙i/k]˙S<k[˙i/k]˙C=0˙
25 sbcbr2g iV[˙i/k]˙S<kS<i/kk
26 csbvarg iVi/kk=i
27 26 breq2d iVS<i/kkS<i
28 25 27 bitrd iV[˙i/k]˙S<kS<i
29 sbceq1g iV[˙i/k]˙C=0˙i/kC=0˙
30 28 29 imbi12d iV[˙i/k]˙S<k[˙i/k]˙C=0˙S<ii/kC=0˙
31 24 30 bitrd iV[˙i/k]˙S<kC=0˙S<ii/kC=0˙
32 31 elv [˙i/k]˙S<kC=0˙S<ii/kC=0˙
33 23 32 sylib i0k0S<kC=0˙S<ii/kC=0˙
34 33 expcom k0S<kC=0˙i0S<ii/kC=0˙
35 7 34 syl φi0S<ii/kC=0˙
36 35 imp31 φi0S<ii/kC=0˙
37 6 nn0red φS
38 37 adantr φi0S
39 38 adantr φi0S<iS
40 nn0re i0i
41 40 ad2antlr φi0S<ii
42 17 ad2antlr φi0S<ii+10
43 42 nn0red φi0S<ii+1
44 simpr φi0S<iS<i
45 41 ltp1d φi0S<ii<i+1
46 39 41 43 44 45 lttrd φi0S<iS<i+1
47 46 ex φi0S<iS<i+1
48 rspsbca i+10k0S<kC=0˙[˙i+1/k]˙S<kC=0˙
49 ovex i+1V
50 sbcimg i+1V[˙i+1/k]˙S<kC=0˙[˙i+1/k]˙S<k[˙i+1/k]˙C=0˙
51 sbcbr2g i+1V[˙i+1/k]˙S<kS<i+1/kk
52 csbvarg i+1Vi+1/kk=i+1
53 52 breq2d i+1VS<i+1/kkS<i+1
54 51 53 bitrd i+1V[˙i+1/k]˙S<kS<i+1
55 sbceq1g i+1V[˙i+1/k]˙C=0˙i+1/kC=0˙
56 54 55 imbi12d i+1V[˙i+1/k]˙S<k[˙i+1/k]˙C=0˙S<i+1i+1/kC=0˙
57 50 56 bitrd i+1V[˙i+1/k]˙S<kC=0˙S<i+1i+1/kC=0˙
58 49 57 ax-mp [˙i+1/k]˙S<kC=0˙S<i+1i+1/kC=0˙
59 48 58 sylib i+10k0S<kC=0˙S<i+1i+1/kC=0˙
60 17 7 59 syl2anr φi0S<i+1i+1/kC=0˙
61 47 60 syld φi0S<ii+1/kC=0˙
62 61 imp φi0S<ii+1/kC=0˙
63 36 62 oveq12d φi0S<ii/kC-˙i+1/kC=0˙-˙0˙
64 12 adantr φi0S<iGGrp
65 1 4 grpidcl GGrp0˙B
66 1 4 3 grpsubid GGrp0˙B0˙-˙0˙=0˙
67 64 65 66 syl2anc2 φi0S<i0˙-˙0˙=0˙
68 63 67 eqtrd φi0S<ii/kC-˙i+1/kC=0˙
69 68 ex φi0S<ii/kC-˙i+1/kC=0˙
70 69 ralrimiva φi0S<ii/kC-˙i+1/kC=0˙
71 1 4 9 22 6 70 gsummptnn0fz φGi0i/kC-˙i+1/kC=Gi=0Si/kC-˙i+1/kC
72 fzssuz 0S+10
73 72 a1i φ0S+10
74 nn0uz 0=0
75 73 74 sseqtrrdi φ0S+10
76 ssralv 0S+10k0CBk0S+1CB
77 75 5 76 sylc φk0S+1CB
78 1 2 3 6 77 telgsumfz0s φGi=0Si/kC-˙i+1/kC=0/kC-˙S+1/kC
79 peano2nn0 S0S+10
80 6 79 syl φS+10
81 37 ltp1d φS<S+1
82 rspsbca S+10k0S<kC=0˙[˙S+1/k]˙S<kC=0˙
83 ovex S+1V
84 sbcimg S+1V[˙S+1/k]˙S<kC=0˙[˙S+1/k]˙S<k[˙S+1/k]˙C=0˙
85 sbcbr2g S+1V[˙S+1/k]˙S<kS<S+1/kk
86 csbvarg S+1VS+1/kk=S+1
87 86 breq2d S+1VS<S+1/kkS<S+1
88 85 87 bitrd S+1V[˙S+1/k]˙S<kS<S+1
89 sbceq1g S+1V[˙S+1/k]˙C=0˙S+1/kC=0˙
90 88 89 imbi12d S+1V[˙S+1/k]˙S<k[˙S+1/k]˙C=0˙S<S+1S+1/kC=0˙
91 84 90 bitrd S+1V[˙S+1/k]˙S<kC=0˙S<S+1S+1/kC=0˙
92 83 91 ax-mp [˙S+1/k]˙S<kC=0˙S<S+1S+1/kC=0˙
93 82 92 sylib S+10k0S<kC=0˙S<S+1S+1/kC=0˙
94 93 ex S+10k0S<kC=0˙S<S+1S+1/kC=0˙
95 80 7 81 94 syl3c φS+1/kC=0˙
96 95 oveq2d φ0/kC-˙S+1/kC=0/kC-˙0˙
97 0nn0 00
98 97 a1i φ00
99 rspcsbela 00k0CB0/kCB
100 98 5 99 syl2anc φ0/kCB
101 1 4 3 grpsubid1 GGrp0/kCB0/kC-˙0˙=0/kC
102 11 100 101 syl2anc φ0/kC-˙0˙=0/kC
103 96 102 eqtrd φ0/kC-˙S+1/kC=0/kC
104 71 78 103 3eqtrd φGi0i/kC-˙i+1/kC=0/kC