Metamath Proof Explorer


Theorem tpres

Description: An unordered triple of ordered pairs restricted to all but one first components of the pairs is an unordered pair of ordered pairs. (Contributed by AV, 14-Mar-2020)

Ref Expression
Hypotheses tpres.t φ T = A D B E C F
tpres.b φ B V
tpres.c φ C V
tpres.e φ E V
tpres.f φ F V
tpres.1 φ B A
tpres.2 φ C A
Assertion tpres φ T V A = B E C F

Proof

Step Hyp Ref Expression
1 tpres.t φ T = A D B E C F
2 tpres.b φ B V
3 tpres.c φ C V
4 tpres.e φ E V
5 tpres.f φ F V
6 tpres.1 φ B A
7 tpres.2 φ C A
8 df-res T V A = T V A × V
9 elin x T V A × V x T x V A × V
10 elxp x V A × V a b x = a b a V A b V
11 10 anbi2i x T x V A × V x T a b x = a b a V A b V
12 1 eleq2d φ x T x A D B E C F
13 vex x V
14 13 eltp x A D B E C F x = A D x = B E x = C F
15 eldifsn a V A a V a A
16 eqeq1 x = a b x = A D a b = A D
17 16 adantl a A x = a b x = A D a b = A D
18 vex a V
19 vex b V
20 18 19 opth a b = A D a = A b = D
21 eqneqall a = A a A b = D φ x = B E x = C F
22 21 com12 a A a = A b = D φ x = B E x = C F
23 22 impd a A a = A b = D φ x = B E x = C F
24 20 23 syl5bi a A a b = A D φ x = B E x = C F
25 24 adantr a A x = a b a b = A D φ x = B E x = C F
26 17 25 sylbid a A x = a b x = A D φ x = B E x = C F
27 26 impd a A x = a b x = A D φ x = B E x = C F
28 27 ex a A x = a b x = A D φ x = B E x = C F
29 28 adantl a V a A x = a b x = A D φ x = B E x = C F
30 15 29 sylbi a V A x = a b x = A D φ x = B E x = C F
31 30 adantr a V A b V x = a b x = A D φ x = B E x = C F
32 31 impcom x = a b a V A b V x = A D φ x = B E x = C F
33 32 com12 x = A D φ x = a b a V A b V x = B E x = C F
34 33 exlimdvv x = A D φ a b x = a b a V A b V x = B E x = C F
35 34 ex x = A D φ a b x = a b a V A b V x = B E x = C F
36 35 impd x = A D φ a b x = a b a V A b V x = B E x = C F
37 orc x = B E x = B E x = C F
38 37 a1d x = B E φ a b x = a b a V A b V x = B E x = C F
39 olc x = C F x = B E x = C F
40 39 a1d x = C F φ a b x = a b a V A b V x = B E x = C F
41 36 38 40 3jaoi x = A D x = B E x = C F φ a b x = a b a V A b V x = B E x = C F
42 14 41 sylbi x A D B E C F φ a b x = a b a V A b V x = B E x = C F
43 13 elpr x B E C F x = B E x = C F
44 42 43 syl6ibr x A D B E C F φ a b x = a b a V A b V x B E C F
45 44 expd x A D B E C F φ a b x = a b a V A b V x B E C F
46 45 com12 φ x A D B E C F a b x = a b a V A b V x B E C F
47 12 46 sylbid φ x T a b x = a b a V A b V x B E C F
48 47 impd φ x T a b x = a b a V A b V x B E C F
49 3mix2 x = B E x = A D x = B E x = C F
50 3mix3 x = C F x = A D x = B E x = C F
51 49 50 jaoi x = B E x = C F x = A D x = B E x = C F
52 51 adantr x = B E x = C F φ x = A D x = B E x = C F
53 12 14 syl6bb φ x T x = A D x = B E x = C F
54 53 adantl x = B E x = C F φ x T x = A D x = B E x = C F
55 52 54 mpbird x = B E x = C F φ x T
56 2 elexd φ B V
57 4 elexd φ E V
58 56 6 57 jca31 φ B V B A E V
59 58 anim2i x = B E φ x = B E B V B A E V
60 opeq12 a = B b = E a b = B E
61 60 eqeq2d a = B b = E x = a b x = B E
62 eleq1 a = B a V B V
63 neeq1 a = B a A B A
64 62 63 anbi12d a = B a V a A B V B A
65 eleq1 b = E b V E V
66 64 65 bi2anan9 a = B b = E a V a A b V B V B A E V
67 61 66 anbi12d a = B b = E x = a b a V a A b V x = B E B V B A E V
68 67 spc2egv B V E V x = B E B V B A E V a b x = a b a V a A b V
69 2 4 68 syl2anc φ x = B E B V B A E V a b x = a b a V a A b V
70 69 adantl x = B E φ x = B E B V B A E V a b x = a b a V a A b V
71 59 70 mpd x = B E φ a b x = a b a V a A b V
72 3 elexd φ C V
73 5 elexd φ F V
74 72 7 73 jca31 φ C V C A F V
75 74 anim2i x = C F φ x = C F C V C A F V
76 opeq12 a = C b = F a b = C F
77 76 eqeq2d a = C b = F x = a b x = C F
78 eleq1 a = C a V C V
79 neeq1 a = C a A C A
80 78 79 anbi12d a = C a V a A C V C A
81 eleq1 b = F b V F V
82 80 81 bi2anan9 a = C b = F a V a A b V C V C A F V
83 77 82 anbi12d a = C b = F x = a b a V a A b V x = C F C V C A F V
84 83 spc2egv C V F V x = C F C V C A F V a b x = a b a V a A b V
85 3 5 84 syl2anc φ x = C F C V C A F V a b x = a b a V a A b V
86 85 adantl x = C F φ x = C F C V C A F V a b x = a b a V a A b V
87 75 86 mpd x = C F φ a b x = a b a V a A b V
88 71 87 jaoian x = B E x = C F φ a b x = a b a V a A b V
89 15 anbi1i a V A b V a V a A b V
90 89 anbi2i x = a b a V A b V x = a b a V a A b V
91 90 2exbii a b x = a b a V A b V a b x = a b a V a A b V
92 88 91 sylibr x = B E x = C F φ a b x = a b a V A b V
93 55 92 jca x = B E x = C F φ x T a b x = a b a V A b V
94 93 ex x = B E x = C F φ x T a b x = a b a V A b V
95 43 94 sylbi x B E C F φ x T a b x = a b a V A b V
96 95 com12 φ x B E C F x T a b x = a b a V A b V
97 48 96 impbid φ x T a b x = a b a V A b V x B E C F
98 11 97 syl5bb φ x T x V A × V x B E C F
99 9 98 syl5bb φ x T V A × V x B E C F
100 99 eqrdv φ T V A × V = B E C F
101 8 100 syl5eq φ T V A = B E C F