Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
trljco
Next ⟩
trljco2
Metamath Proof Explorer
Ascii
Unicode
Theorem
trljco
Description:
Trace joined with trace of composition.
(Contributed by
NM
, 15-Jun-2013)
Ref
Expression
Hypotheses
trljco.j
⊢
∨
˙
=
join
K
trljco.h
⊢
H
=
LHyp
K
trljco.t
⊢
T
=
LTrn
K
W
trljco.r
⊢
R
=
trL
K
W
Assertion
trljco
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
→
R
F
∨
˙
R
F
∘
G
=
R
F
∨
˙
R
G
Proof
Step
Hyp
Ref
Expression
1
trljco.j
⊢
∨
˙
=
join
K
2
trljco.h
⊢
H
=
LHyp
K
3
trljco.t
⊢
T
=
LTrn
K
W
4
trljco.r
⊢
R
=
trL
K
W
5
coeq1
⊢
F
=
I
↾
Base
K
→
F
∘
G
=
I
↾
Base
K
∘
G
6
eqid
⊢
Base
K
=
Base
K
7
6
2
3
ltrn1o
⊢
K
∈
HL
∧
W
∈
H
∧
G
∈
T
→
G
:
Base
K
⟶
1-1 onto
Base
K
8
7
3adant2
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
→
G
:
Base
K
⟶
1-1 onto
Base
K
9
f1of
⊢
G
:
Base
K
⟶
1-1 onto
Base
K
→
G
:
Base
K
⟶
Base
K
10
fcoi2
⊢
G
:
Base
K
⟶
Base
K
→
I
↾
Base
K
∘
G
=
G
11
8
9
10
3syl
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
→
I
↾
Base
K
∘
G
=
G
12
5
11
sylan9eqr
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
F
=
I
↾
Base
K
→
F
∘
G
=
G
13
12
fveq2d
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
F
=
I
↾
Base
K
→
R
F
∘
G
=
R
G
14
13
oveq2d
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
F
=
I
↾
Base
K
→
R
F
∨
˙
R
F
∘
G
=
R
F
∨
˙
R
G
15
simp1l
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
→
K
∈
HL
16
15
hllatd
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
→
K
∈
Lat
17
6
2
3
4
trlcl
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
→
R
F
∈
Base
K
18
17
3adant3
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
→
R
F
∈
Base
K
19
6
1
latjidm
⊢
K
∈
Lat
∧
R
F
∈
Base
K
→
R
F
∨
˙
R
F
=
R
F
20
16
18
19
syl2anc
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
→
R
F
∨
˙
R
F
=
R
F
21
hlol
⊢
K
∈
HL
→
K
∈
OL
22
15
21
syl
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
→
K
∈
OL
23
eqid
⊢
0.
K
=
0.
K
24
6
1
23
olj01
⊢
K
∈
OL
∧
R
F
∈
Base
K
→
R
F
∨
˙
0.
K
=
R
F
25
22
18
24
syl2anc
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
→
R
F
∨
˙
0.
K
=
R
F
26
20
25
eqtr4d
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
→
R
F
∨
˙
R
F
=
R
F
∨
˙
0.
K
27
26
adantr
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
G
=
I
↾
Base
K
→
R
F
∨
˙
R
F
=
R
F
∨
˙
0.
K
28
coeq2
⊢
G
=
I
↾
Base
K
→
F
∘
G
=
F
∘
I
↾
Base
K
29
6
2
3
ltrn1o
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
→
F
:
Base
K
⟶
1-1 onto
Base
K
30
29
3adant3
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
→
F
:
Base
K
⟶
1-1 onto
Base
K
31
f1of
⊢
F
:
Base
K
⟶
1-1 onto
Base
K
→
F
:
Base
K
⟶
Base
K
32
fcoi1
⊢
F
:
Base
K
⟶
Base
K
→
F
∘
I
↾
Base
K
=
F
33
30
31
32
3syl
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
→
F
∘
I
↾
Base
K
=
F
34
28
33
sylan9eqr
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
G
=
I
↾
Base
K
→
F
∘
G
=
F
35
34
fveq2d
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
G
=
I
↾
Base
K
→
R
F
∘
G
=
R
F
36
35
oveq2d
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
G
=
I
↾
Base
K
→
R
F
∨
˙
R
F
∘
G
=
R
F
∨
˙
R
F
37
6
23
2
3
4
trlid0b
⊢
K
∈
HL
∧
W
∈
H
∧
G
∈
T
→
G
=
I
↾
Base
K
↔
R
G
=
0.
K
38
37
3adant2
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
→
G
=
I
↾
Base
K
↔
R
G
=
0.
K
39
38
biimpa
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
G
=
I
↾
Base
K
→
R
G
=
0.
K
40
39
oveq2d
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
G
=
I
↾
Base
K
→
R
F
∨
˙
R
G
=
R
F
∨
˙
0.
K
41
27
36
40
3eqtr4d
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
G
=
I
↾
Base
K
→
R
F
∨
˙
R
F
∘
G
=
R
F
∨
˙
R
G
42
eqid
⊢
≤
K
=
≤
K
43
16
adantr
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
F
=
R
G
→
K
∈
Lat
44
simp1
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
→
K
∈
HL
∧
W
∈
H
45
2
3
ltrnco
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
→
F
∘
G
∈
T
46
6
2
3
4
trlcl
⊢
K
∈
HL
∧
W
∈
H
∧
F
∘
G
∈
T
→
R
F
∘
G
∈
Base
K
47
44
45
46
syl2anc
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
→
R
F
∘
G
∈
Base
K
48
6
1
latjcl
⊢
K
∈
Lat
∧
R
F
∈
Base
K
∧
R
F
∘
G
∈
Base
K
→
R
F
∨
˙
R
F
∘
G
∈
Base
K
49
16
18
47
48
syl3anc
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
→
R
F
∨
˙
R
F
∘
G
∈
Base
K
50
49
adantr
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
F
=
R
G
→
R
F
∨
˙
R
F
∘
G
∈
Base
K
51
6
2
3
4
trlcl
⊢
K
∈
HL
∧
W
∈
H
∧
G
∈
T
→
R
G
∈
Base
K
52
51
3adant2
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
→
R
G
∈
Base
K
53
6
1
latjcl
⊢
K
∈
Lat
∧
R
F
∈
Base
K
∧
R
G
∈
Base
K
→
R
F
∨
˙
R
G
∈
Base
K
54
16
18
52
53
syl3anc
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
→
R
F
∨
˙
R
G
∈
Base
K
55
54
adantr
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
F
=
R
G
→
R
F
∨
˙
R
G
∈
Base
K
56
6
42
1
latlej1
⊢
K
∈
Lat
∧
R
F
∈
Base
K
∧
R
G
∈
Base
K
→
R
F
≤
K
R
F
∨
˙
R
G
57
16
18
52
56
syl3anc
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
→
R
F
≤
K
R
F
∨
˙
R
G
58
42
1
2
3
4
trlco
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
→
R
F
∘
G
≤
K
R
F
∨
˙
R
G
59
6
42
1
latjle12
⊢
K
∈
Lat
∧
R
F
∈
Base
K
∧
R
F
∘
G
∈
Base
K
∧
R
F
∨
˙
R
G
∈
Base
K
→
R
F
≤
K
R
F
∨
˙
R
G
∧
R
F
∘
G
≤
K
R
F
∨
˙
R
G
↔
R
F
∨
˙
R
F
∘
G
≤
K
R
F
∨
˙
R
G
60
16
18
47
54
59
syl13anc
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
→
R
F
≤
K
R
F
∨
˙
R
G
∧
R
F
∘
G
≤
K
R
F
∨
˙
R
G
↔
R
F
∨
˙
R
F
∘
G
≤
K
R
F
∨
˙
R
G
61
57
58
60
mpbi2and
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
→
R
F
∨
˙
R
F
∘
G
≤
K
R
F
∨
˙
R
G
62
61
adantr
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
F
=
R
G
→
R
F
∨
˙
R
F
∘
G
≤
K
R
F
∨
˙
R
G
63
simpr
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
F
=
R
G
→
R
F
=
R
G
64
63
oveq2d
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
F
=
R
G
→
R
F
∨
˙
R
F
=
R
F
∨
˙
R
G
65
6
42
1
latlej1
⊢
K
∈
Lat
∧
R
F
∈
Base
K
∧
R
F
∘
G
∈
Base
K
→
R
F
≤
K
R
F
∨
˙
R
F
∘
G
66
16
18
47
65
syl3anc
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
→
R
F
≤
K
R
F
∨
˙
R
F
∘
G
67
20
66
eqbrtrd
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
→
R
F
∨
˙
R
F
≤
K
R
F
∨
˙
R
F
∘
G
68
67
adantr
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
F
=
R
G
→
R
F
∨
˙
R
F
≤
K
R
F
∨
˙
R
F
∘
G
69
64
68
eqbrtrrd
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
F
=
R
G
→
R
F
∨
˙
R
G
≤
K
R
F
∨
˙
R
F
∘
G
70
6
42
43
50
55
62
69
latasymd
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
F
=
R
G
→
R
F
∨
˙
R
F
∘
G
=
R
F
∨
˙
R
G
71
61
adantr
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
F
≠
I
↾
Base
K
∧
G
≠
I
↾
Base
K
∧
R
F
≠
R
G
→
R
F
∨
˙
R
F
∘
G
≤
K
R
F
∨
˙
R
G
72
simpl1l
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
F
≠
I
↾
Base
K
∧
G
≠
I
↾
Base
K
∧
R
F
≠
R
G
→
K
∈
HL
73
simpl1
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
F
≠
I
↾
Base
K
∧
G
≠
I
↾
Base
K
∧
R
F
≠
R
G
→
K
∈
HL
∧
W
∈
H
74
simpl2
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
F
≠
I
↾
Base
K
∧
G
≠
I
↾
Base
K
∧
R
F
≠
R
G
→
F
∈
T
75
simpr1
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
F
≠
I
↾
Base
K
∧
G
≠
I
↾
Base
K
∧
R
F
≠
R
G
→
F
≠
I
↾
Base
K
76
eqid
⊢
Atoms
K
=
Atoms
K
77
6
76
2
3
4
trlnidat
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
F
≠
I
↾
Base
K
→
R
F
∈
Atoms
K
78
73
74
75
77
syl3anc
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
F
≠
I
↾
Base
K
∧
G
≠
I
↾
Base
K
∧
R
F
≠
R
G
→
R
F
∈
Atoms
K
79
simpl3
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
F
≠
I
↾
Base
K
∧
G
≠
I
↾
Base
K
∧
R
F
≠
R
G
→
G
∈
T
80
74
79
jca
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
F
≠
I
↾
Base
K
∧
G
≠
I
↾
Base
K
∧
R
F
≠
R
G
→
F
∈
T
∧
G
∈
T
81
simpr3
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
F
≠
I
↾
Base
K
∧
G
≠
I
↾
Base
K
∧
R
F
≠
R
G
→
R
F
≠
R
G
82
76
2
3
4
trlcoat
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
F
≠
R
G
→
R
F
∘
G
∈
Atoms
K
83
73
80
81
82
syl3anc
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
F
≠
I
↾
Base
K
∧
G
≠
I
↾
Base
K
∧
R
F
≠
R
G
→
R
F
∘
G
∈
Atoms
K
84
simpr2
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
F
≠
I
↾
Base
K
∧
G
≠
I
↾
Base
K
∧
R
F
≠
R
G
→
G
≠
I
↾
Base
K
85
6
2
3
4
trlcone
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
F
≠
R
G
∧
G
≠
I
↾
Base
K
→
R
F
≠
R
F
∘
G
86
73
80
81
84
85
syl112anc
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
F
≠
I
↾
Base
K
∧
G
≠
I
↾
Base
K
∧
R
F
≠
R
G
→
R
F
≠
R
F
∘
G
87
6
76
2
3
4
trlnidat
⊢
K
∈
HL
∧
W
∈
H
∧
G
∈
T
∧
G
≠
I
↾
Base
K
→
R
G
∈
Atoms
K
88
73
79
84
87
syl3anc
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
F
≠
I
↾
Base
K
∧
G
≠
I
↾
Base
K
∧
R
F
≠
R
G
→
R
G
∈
Atoms
K
89
42
1
76
ps-1
⊢
K
∈
HL
∧
R
F
∈
Atoms
K
∧
R
F
∘
G
∈
Atoms
K
∧
R
F
≠
R
F
∘
G
∧
R
F
∈
Atoms
K
∧
R
G
∈
Atoms
K
→
R
F
∨
˙
R
F
∘
G
≤
K
R
F
∨
˙
R
G
↔
R
F
∨
˙
R
F
∘
G
=
R
F
∨
˙
R
G
90
72
78
83
86
78
88
89
syl132anc
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
F
≠
I
↾
Base
K
∧
G
≠
I
↾
Base
K
∧
R
F
≠
R
G
→
R
F
∨
˙
R
F
∘
G
≤
K
R
F
∨
˙
R
G
↔
R
F
∨
˙
R
F
∘
G
=
R
F
∨
˙
R
G
91
71
90
mpbid
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
F
≠
I
↾
Base
K
∧
G
≠
I
↾
Base
K
∧
R
F
≠
R
G
→
R
F
∨
˙
R
F
∘
G
=
R
F
∨
˙
R
G
92
14
41
70
91
pm2.61da3ne
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
→
R
F
∨
˙
R
F
∘
G
=
R
F
∨
˙
R
G