Metamath Proof Explorer


Theorem trljco

Description: Trace joined with trace of composition. (Contributed by NM, 15-Jun-2013)

Ref Expression
Hypotheses trljco.j ˙=joinK
trljco.h H=LHypK
trljco.t T=LTrnKW
trljco.r R=trLKW
Assertion trljco KHLWHFTGTRF˙RFG=RF˙RG

Proof

Step Hyp Ref Expression
1 trljco.j ˙=joinK
2 trljco.h H=LHypK
3 trljco.t T=LTrnKW
4 trljco.r R=trLKW
5 coeq1 F=IBaseKFG=IBaseKG
6 eqid BaseK=BaseK
7 6 2 3 ltrn1o KHLWHGTG:BaseK1-1 ontoBaseK
8 7 3adant2 KHLWHFTGTG:BaseK1-1 ontoBaseK
9 f1of G:BaseK1-1 ontoBaseKG:BaseKBaseK
10 fcoi2 G:BaseKBaseKIBaseKG=G
11 8 9 10 3syl KHLWHFTGTIBaseKG=G
12 5 11 sylan9eqr KHLWHFTGTF=IBaseKFG=G
13 12 fveq2d KHLWHFTGTF=IBaseKRFG=RG
14 13 oveq2d KHLWHFTGTF=IBaseKRF˙RFG=RF˙RG
15 simp1l KHLWHFTGTKHL
16 15 hllatd KHLWHFTGTKLat
17 6 2 3 4 trlcl KHLWHFTRFBaseK
18 17 3adant3 KHLWHFTGTRFBaseK
19 6 1 latjidm KLatRFBaseKRF˙RF=RF
20 16 18 19 syl2anc KHLWHFTGTRF˙RF=RF
21 hlol KHLKOL
22 15 21 syl KHLWHFTGTKOL
23 eqid 0.K=0.K
24 6 1 23 olj01 KOLRFBaseKRF˙0.K=RF
25 22 18 24 syl2anc KHLWHFTGTRF˙0.K=RF
26 20 25 eqtr4d KHLWHFTGTRF˙RF=RF˙0.K
27 26 adantr KHLWHFTGTG=IBaseKRF˙RF=RF˙0.K
28 coeq2 G=IBaseKFG=FIBaseK
29 6 2 3 ltrn1o KHLWHFTF:BaseK1-1 ontoBaseK
30 29 3adant3 KHLWHFTGTF:BaseK1-1 ontoBaseK
31 f1of F:BaseK1-1 ontoBaseKF:BaseKBaseK
32 fcoi1 F:BaseKBaseKFIBaseK=F
33 30 31 32 3syl KHLWHFTGTFIBaseK=F
34 28 33 sylan9eqr KHLWHFTGTG=IBaseKFG=F
35 34 fveq2d KHLWHFTGTG=IBaseKRFG=RF
36 35 oveq2d KHLWHFTGTG=IBaseKRF˙RFG=RF˙RF
37 6 23 2 3 4 trlid0b KHLWHGTG=IBaseKRG=0.K
38 37 3adant2 KHLWHFTGTG=IBaseKRG=0.K
39 38 biimpa KHLWHFTGTG=IBaseKRG=0.K
40 39 oveq2d KHLWHFTGTG=IBaseKRF˙RG=RF˙0.K
41 27 36 40 3eqtr4d KHLWHFTGTG=IBaseKRF˙RFG=RF˙RG
42 eqid K=K
43 16 adantr KHLWHFTGTRF=RGKLat
44 simp1 KHLWHFTGTKHLWH
45 2 3 ltrnco KHLWHFTGTFGT
46 6 2 3 4 trlcl KHLWHFGTRFGBaseK
47 44 45 46 syl2anc KHLWHFTGTRFGBaseK
48 6 1 latjcl KLatRFBaseKRFGBaseKRF˙RFGBaseK
49 16 18 47 48 syl3anc KHLWHFTGTRF˙RFGBaseK
50 49 adantr KHLWHFTGTRF=RGRF˙RFGBaseK
51 6 2 3 4 trlcl KHLWHGTRGBaseK
52 51 3adant2 KHLWHFTGTRGBaseK
53 6 1 latjcl KLatRFBaseKRGBaseKRF˙RGBaseK
54 16 18 52 53 syl3anc KHLWHFTGTRF˙RGBaseK
55 54 adantr KHLWHFTGTRF=RGRF˙RGBaseK
56 6 42 1 latlej1 KLatRFBaseKRGBaseKRFKRF˙RG
57 16 18 52 56 syl3anc KHLWHFTGTRFKRF˙RG
58 42 1 2 3 4 trlco KHLWHFTGTRFGKRF˙RG
59 6 42 1 latjle12 KLatRFBaseKRFGBaseKRF˙RGBaseKRFKRF˙RGRFGKRF˙RGRF˙RFGKRF˙RG
60 16 18 47 54 59 syl13anc KHLWHFTGTRFKRF˙RGRFGKRF˙RGRF˙RFGKRF˙RG
61 57 58 60 mpbi2and KHLWHFTGTRF˙RFGKRF˙RG
62 61 adantr KHLWHFTGTRF=RGRF˙RFGKRF˙RG
63 simpr KHLWHFTGTRF=RGRF=RG
64 63 oveq2d KHLWHFTGTRF=RGRF˙RF=RF˙RG
65 6 42 1 latlej1 KLatRFBaseKRFGBaseKRFKRF˙RFG
66 16 18 47 65 syl3anc KHLWHFTGTRFKRF˙RFG
67 20 66 eqbrtrd KHLWHFTGTRF˙RFKRF˙RFG
68 67 adantr KHLWHFTGTRF=RGRF˙RFKRF˙RFG
69 64 68 eqbrtrrd KHLWHFTGTRF=RGRF˙RGKRF˙RFG
70 6 42 43 50 55 62 69 latasymd KHLWHFTGTRF=RGRF˙RFG=RF˙RG
71 61 adantr KHLWHFTGTFIBaseKGIBaseKRFRGRF˙RFGKRF˙RG
72 simpl1l KHLWHFTGTFIBaseKGIBaseKRFRGKHL
73 simpl1 KHLWHFTGTFIBaseKGIBaseKRFRGKHLWH
74 simpl2 KHLWHFTGTFIBaseKGIBaseKRFRGFT
75 simpr1 KHLWHFTGTFIBaseKGIBaseKRFRGFIBaseK
76 eqid AtomsK=AtomsK
77 6 76 2 3 4 trlnidat KHLWHFTFIBaseKRFAtomsK
78 73 74 75 77 syl3anc KHLWHFTGTFIBaseKGIBaseKRFRGRFAtomsK
79 simpl3 KHLWHFTGTFIBaseKGIBaseKRFRGGT
80 74 79 jca KHLWHFTGTFIBaseKGIBaseKRFRGFTGT
81 simpr3 KHLWHFTGTFIBaseKGIBaseKRFRGRFRG
82 76 2 3 4 trlcoat KHLWHFTGTRFRGRFGAtomsK
83 73 80 81 82 syl3anc KHLWHFTGTFIBaseKGIBaseKRFRGRFGAtomsK
84 simpr2 KHLWHFTGTFIBaseKGIBaseKRFRGGIBaseK
85 6 2 3 4 trlcone KHLWHFTGTRFRGGIBaseKRFRFG
86 73 80 81 84 85 syl112anc KHLWHFTGTFIBaseKGIBaseKRFRGRFRFG
87 6 76 2 3 4 trlnidat KHLWHGTGIBaseKRGAtomsK
88 73 79 84 87 syl3anc KHLWHFTGTFIBaseKGIBaseKRFRGRGAtomsK
89 42 1 76 ps-1 KHLRFAtomsKRFGAtomsKRFRFGRFAtomsKRGAtomsKRF˙RFGKRF˙RGRF˙RFG=RF˙RG
90 72 78 83 86 78 88 89 syl132anc KHLWHFTGTFIBaseKGIBaseKRFRGRF˙RFGKRF˙RGRF˙RFG=RF˙RG
91 71 90 mpbid KHLWHFTGTFIBaseKGIBaseKRFRGRF˙RFG=RF˙RG
92 14 41 70 91 pm2.61da3ne KHLWHFTGTRF˙RFG=RF˙RG