Metamath Proof Explorer


Theorem trlval2

Description: The value of the trace of a lattice translation, given any atom P not under the fiducial co-atom W . Note: this requires only the weaker assumption K e. Lat ; we use K e. HL for convenience. (Contributed by NM, 20-May-2012)

Ref Expression
Hypotheses trlval2.l ˙=K
trlval2.j ˙=joinK
trlval2.m ˙=meetK
trlval2.a A=AtomsK
trlval2.h H=LHypK
trlval2.t T=LTrnKW
trlval2.r R=trLKW
Assertion trlval2 KHLWHFTPA¬P˙WRF=P˙FP˙W

Proof

Step Hyp Ref Expression
1 trlval2.l ˙=K
2 trlval2.j ˙=joinK
3 trlval2.m ˙=meetK
4 trlval2.a A=AtomsK
5 trlval2.h H=LHypK
6 trlval2.t T=LTrnKW
7 trlval2.r R=trLKW
8 hllat KHLKLat
9 8 anim1i KHLWHKLatWH
10 eqid BaseK=BaseK
11 10 1 2 3 4 5 6 7 trlval KLatWHFTRF=ιxBaseK|qA¬q˙Wx=q˙Fq˙W
12 11 3adant3 KLatWHFTPA¬P˙WRF=ιxBaseK|qA¬q˙Wx=q˙Fq˙W
13 simp1l KLatWHFTPA¬P˙WKLat
14 simp3l KLatWHFTPA¬P˙WPA
15 10 4 atbase PAPBaseK
16 14 15 syl KLatWHFTPA¬P˙WPBaseK
17 10 5 6 ltrncl KLatWHFTPBaseKFPBaseK
18 16 17 syld3an3 KLatWHFTPA¬P˙WFPBaseK
19 10 2 latjcl KLatPBaseKFPBaseKP˙FPBaseK
20 13 16 18 19 syl3anc KLatWHFTPA¬P˙WP˙FPBaseK
21 simp1r KLatWHFTPA¬P˙WWH
22 10 5 lhpbase WHWBaseK
23 21 22 syl KLatWHFTPA¬P˙WWBaseK
24 10 3 latmcl KLatP˙FPBaseKWBaseKP˙FP˙WBaseK
25 13 20 23 24 syl3anc KLatWHFTPA¬P˙WP˙FP˙WBaseK
26 simpl3l KLatWHFTPA¬P˙WxBaseKPA
27 simpl3r KLatWHFTPA¬P˙WxBaseK¬P˙W
28 breq1 q=Pq˙WP˙W
29 28 notbid q=P¬q˙W¬P˙W
30 id q=Pq=P
31 fveq2 q=PFq=FP
32 30 31 oveq12d q=Pq˙Fq=P˙FP
33 32 oveq1d q=Pq˙Fq˙W=P˙FP˙W
34 33 eqeq2d q=Px=q˙Fq˙Wx=P˙FP˙W
35 29 34 imbi12d q=P¬q˙Wx=q˙Fq˙W¬P˙Wx=P˙FP˙W
36 35 rspcv PAqA¬q˙Wx=q˙Fq˙W¬P˙Wx=P˙FP˙W
37 36 com23 PA¬P˙WqA¬q˙Wx=q˙Fq˙Wx=P˙FP˙W
38 26 27 37 sylc KLatWHFTPA¬P˙WxBaseKqA¬q˙Wx=q˙Fq˙Wx=P˙FP˙W
39 simp11 KLatWHFTPA¬P˙W¬q˙WqAKLatWH
40 simp12 KLatWHFTPA¬P˙W¬q˙WqAFT
41 simp13l KLatWHFTPA¬P˙W¬q˙WqAPA
42 simp13r KLatWHFTPA¬P˙W¬q˙WqA¬P˙W
43 simp3 KLatWHFTPA¬P˙W¬q˙WqAqA
44 simp2 KLatWHFTPA¬P˙W¬q˙WqA¬q˙W
45 1 2 3 4 5 6 ltrnu KLatWHFTPA¬P˙WqA¬q˙WP˙FP˙W=q˙Fq˙W
46 39 40 41 42 43 44 45 syl222anc KLatWHFTPA¬P˙W¬q˙WqAP˙FP˙W=q˙Fq˙W
47 eqeq2 P˙FP˙W=q˙Fq˙Wx=P˙FP˙Wx=q˙Fq˙W
48 47 biimpd P˙FP˙W=q˙Fq˙Wx=P˙FP˙Wx=q˙Fq˙W
49 46 48 syl KLatWHFTPA¬P˙W¬q˙WqAx=P˙FP˙Wx=q˙Fq˙W
50 49 3exp KLatWHFTPA¬P˙W¬q˙WqAx=P˙FP˙Wx=q˙Fq˙W
51 50 com24 KLatWHFTPA¬P˙Wx=P˙FP˙WqA¬q˙Wx=q˙Fq˙W
52 51 ralrimdv KLatWHFTPA¬P˙Wx=P˙FP˙WqA¬q˙Wx=q˙Fq˙W
53 52 adantr KLatWHFTPA¬P˙WxBaseKx=P˙FP˙WqA¬q˙Wx=q˙Fq˙W
54 38 53 impbid KLatWHFTPA¬P˙WxBaseKqA¬q˙Wx=q˙Fq˙Wx=P˙FP˙W
55 25 54 riota5 KLatWHFTPA¬P˙WιxBaseK|qA¬q˙Wx=q˙Fq˙W=P˙FP˙W
56 12 55 eqtrd KLatWHFTPA¬P˙WRF=P˙FP˙W
57 9 56 syl3an1 KHLWHFTPA¬P˙WRF=P˙FP˙W