Metamath Proof Explorer


Theorem txlly

Description: If the property A is preserved under topological products, then so is the property of being locally A . (Contributed by Mario Carneiro, 10-Mar-2015)

Ref Expression
Hypothesis txlly.1 jAkAj×tkA
Assertion txlly RLocally A SLocally A R×tSLocally A

Proof

Step Hyp Ref Expression
1 txlly.1 jAkAj×tkA
2 llytop RLocally A RTop
3 llytop SLocally A STop
4 txtop RTopSTopR×tSTop
5 2 3 4 syl2an RLocally A SLocally A R×tSTop
6 eltx RLocally A SLocally A xR×tSyxuRvSyu×vu×vx
7 simpll RLocally A SLocally A uRvSyu×vu×vx RLocally A
8 simprll RLocally A SLocally A uRvSyu×vu×vx uR
9 simprrl RLocally A SLocally A uRvSyu×vu×vx yu×v
10 xp1st yu×v1styu
11 9 10 syl RLocally A SLocally A uRvSyu×vu×vx 1styu
12 llyi RLocally A uR 1styu rRru1styrR𝑡rA
13 7 8 11 12 syl3anc RLocally A SLocally A uRvSyu×vu×vx rRru1styrR𝑡rA
14 simplr RLocally A SLocally A uRvSyu×vu×vx SLocally A
15 simprlr RLocally A SLocally A uRvSyu×vu×vx vS
16 xp2nd yu×v2ndyv
17 9 16 syl RLocally A SLocally A uRvSyu×vu×vx 2ndyv
18 llyi SLocally A vS 2ndyv sSsv2ndysS𝑡sA
19 14 15 17 18 syl3anc RLocally A SLocally A uRvSyu×vu×vx sSsv2ndysS𝑡sA
20 reeanv rRsSru1styrR𝑡rAsv2ndysS𝑡sArRru1styrR𝑡rAsSsv2ndysS𝑡sA
21 2 ad3antrrr RLocally A SLocally A uRvSyu×vu×vx rRsSru1styrR𝑡rAsv2ndysS𝑡sA RTop
22 3 ad3antlr RLocally A SLocally A uRvSyu×vu×vx rRsSru1styrR𝑡rAsv2ndysS𝑡sA STop
23 simprll RLocally A SLocally A uRvSyu×vu×vx rRsSru1styrR𝑡rAsv2ndysS𝑡sA rR
24 simprlr RLocally A SLocally A uRvSyu×vu×vx rRsSru1styrR𝑡rAsv2ndysS𝑡sA sS
25 txopn RTopSToprRsSr×sR×tS
26 21 22 23 24 25 syl22anc RLocally A SLocally A uRvSyu×vu×vx rRsSru1styrR𝑡rAsv2ndysS𝑡sA r×sR×tS
27 simprl1 rRsSru1styrR𝑡rAsv2ndysS𝑡sAru
28 simprr1 rRsSru1styrR𝑡rAsv2ndysS𝑡sAsv
29 xpss12 rusvr×su×v
30 27 28 29 syl2anc rRsSru1styrR𝑡rAsv2ndysS𝑡sAr×su×v
31 simprrr RLocally A SLocally A uRvSyu×vu×vx u×vx
32 30 31 sylan9ssr RLocally A SLocally A uRvSyu×vu×vx rRsSru1styrR𝑡rAsv2ndysS𝑡sA r×sx
33 vex xV
34 33 elpw2 r×s𝒫xr×sx
35 32 34 sylibr RLocally A SLocally A uRvSyu×vu×vx rRsSru1styrR𝑡rAsv2ndysS𝑡sA r×s𝒫x
36 26 35 elind RLocally A SLocally A uRvSyu×vu×vx rRsSru1styrR𝑡rAsv2ndysS𝑡sA r×sR×tS𝒫x
37 1st2nd2 yu×vy=1sty2ndy
38 9 37 syl RLocally A SLocally A uRvSyu×vu×vx y=1sty2ndy
39 38 adantr RLocally A SLocally A uRvSyu×vu×vx rRsSru1styrR𝑡rAsv2ndysS𝑡sA y=1sty2ndy
40 simprl2 rRsSru1styrR𝑡rAsv2ndysS𝑡sA1styr
41 simprr2 rRsSru1styrR𝑡rAsv2ndysS𝑡sA2ndys
42 40 41 opelxpd rRsSru1styrR𝑡rAsv2ndysS𝑡sA1sty2ndyr×s
43 42 adantl RLocally A SLocally A uRvSyu×vu×vx rRsSru1styrR𝑡rAsv2ndysS𝑡sA 1sty2ndyr×s
44 39 43 eqeltrd RLocally A SLocally A uRvSyu×vu×vx rRsSru1styrR𝑡rAsv2ndysS𝑡sA yr×s
45 txrest RTopSToprRsSR×tS𝑡r×s=R𝑡r×tS𝑡s
46 21 22 23 24 45 syl22anc RLocally A SLocally A uRvSyu×vu×vx rRsSru1styrR𝑡rAsv2ndysS𝑡sA R×tS𝑡r×s=R𝑡r×tS𝑡s
47 simprl3 rRsSru1styrR𝑡rAsv2ndysS𝑡sAR𝑡rA
48 simprr3 rRsSru1styrR𝑡rAsv2ndysS𝑡sAS𝑡sA
49 1 caovcl R𝑡rAS𝑡sAR𝑡r×tS𝑡sA
50 47 48 49 syl2anc rRsSru1styrR𝑡rAsv2ndysS𝑡sAR𝑡r×tS𝑡sA
51 50 adantl RLocally A SLocally A uRvSyu×vu×vx rRsSru1styrR𝑡rAsv2ndysS𝑡sA R𝑡r×tS𝑡sA
52 46 51 eqeltrd RLocally A SLocally A uRvSyu×vu×vx rRsSru1styrR𝑡rAsv2ndysS𝑡sA R×tS𝑡r×sA
53 eleq2 z=r×syzyr×s
54 oveq2 z=r×sR×tS𝑡z=R×tS𝑡r×s
55 54 eleq1d z=r×sR×tS𝑡zAR×tS𝑡r×sA
56 53 55 anbi12d z=r×syzR×tS𝑡zAyr×sR×tS𝑡r×sA
57 56 rspcev r×sR×tS𝒫xyr×sR×tS𝑡r×sAzR×tS𝒫xyzR×tS𝑡zA
58 36 44 52 57 syl12anc RLocally A SLocally A uRvSyu×vu×vx rRsSru1styrR𝑡rAsv2ndysS𝑡sA zR×tS𝒫xyzR×tS𝑡zA
59 58 expr RLocally A SLocally A uRvSyu×vu×vx rRsS ru1styrR𝑡rAsv2ndysS𝑡sAzR×tS𝒫xyzR×tS𝑡zA
60 59 rexlimdvva RLocally A SLocally A uRvSyu×vu×vx rRsSru1styrR𝑡rAsv2ndysS𝑡sAzR×tS𝒫xyzR×tS𝑡zA
61 20 60 biimtrrid RLocally A SLocally A uRvSyu×vu×vx rRru1styrR𝑡rAsSsv2ndysS𝑡sAzR×tS𝒫xyzR×tS𝑡zA
62 13 19 61 mp2and RLocally A SLocally A uRvSyu×vu×vx zR×tS𝒫xyzR×tS𝑡zA
63 62 expr RLocally A SLocally A uRvS yu×vu×vxzR×tS𝒫xyzR×tS𝑡zA
64 63 rexlimdvva RLocally A SLocally A uRvSyu×vu×vxzR×tS𝒫xyzR×tS𝑡zA
65 64 ralimdv RLocally A SLocally A yxuRvSyu×vu×vxyxzR×tS𝒫xyzR×tS𝑡zA
66 6 65 sylbid RLocally A SLocally A xR×tSyxzR×tS𝒫xyzR×tS𝑡zA
67 66 ralrimiv RLocally A SLocally A xR×tSyxzR×tS𝒫xyzR×tS𝑡zA
68 islly R×tSLocally A R×tSTopxR×tSyxzR×tS𝒫xyzR×tS𝑡zA
69 5 67 68 sylanbrc RLocally A SLocally A R×tSLocally A