Description: If the property A is preserved under topological products, then so is the property of being locally A . (Contributed by Mario Carneiro, 10-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | txlly.1 | |
|
Assertion | txlly | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | txlly.1 | |
|
2 | llytop | |
|
3 | llytop | |
|
4 | txtop | |
|
5 | 2 3 4 | syl2an | |
6 | eltx | |
|
7 | simpll | |
|
8 | simprll | |
|
9 | simprrl | |
|
10 | xp1st | |
|
11 | 9 10 | syl | |
12 | llyi | |
|
13 | 7 8 11 12 | syl3anc | |
14 | simplr | |
|
15 | simprlr | |
|
16 | xp2nd | |
|
17 | 9 16 | syl | |
18 | llyi | |
|
19 | 14 15 17 18 | syl3anc | |
20 | reeanv | |
|
21 | 2 | ad3antrrr | |
22 | 3 | ad3antlr | |
23 | simprll | |
|
24 | simprlr | |
|
25 | txopn | |
|
26 | 21 22 23 24 25 | syl22anc | |
27 | simprl1 | |
|
28 | simprr1 | |
|
29 | xpss12 | |
|
30 | 27 28 29 | syl2anc | |
31 | simprrr | |
|
32 | 30 31 | sylan9ssr | |
33 | vex | |
|
34 | 33 | elpw2 | |
35 | 32 34 | sylibr | |
36 | 26 35 | elind | |
37 | 1st2nd2 | |
|
38 | 9 37 | syl | |
39 | 38 | adantr | |
40 | simprl2 | |
|
41 | simprr2 | |
|
42 | 40 41 | opelxpd | |
43 | 42 | adantl | |
44 | 39 43 | eqeltrd | |
45 | txrest | |
|
46 | 21 22 23 24 45 | syl22anc | |
47 | simprl3 | |
|
48 | simprr3 | |
|
49 | 1 | caovcl | |
50 | 47 48 49 | syl2anc | |
51 | 50 | adantl | |
52 | 46 51 | eqeltrd | |
53 | eleq2 | |
|
54 | oveq2 | |
|
55 | 54 | eleq1d | |
56 | 53 55 | anbi12d | |
57 | 56 | rspcev | |
58 | 36 44 52 57 | syl12anc | |
59 | 58 | expr | |
60 | 59 | rexlimdvva | |
61 | 20 60 | biimtrrid | |
62 | 13 19 61 | mp2and | |
63 | 62 | expr | |
64 | 63 | rexlimdvva | |
65 | 64 | ralimdv | |
66 | 6 65 | sylbid | |
67 | 66 | ralrimiv | |
68 | islly | |
|
69 | 5 67 68 | sylanbrc | |