Step |
Hyp |
Ref |
Expression |
1 |
|
pconntop |
|
2 |
|
pconntop |
|
3 |
|
txtop |
|
4 |
1 2 3
|
syl2an |
|
5 |
|
an6 |
|
6 |
|
eqid |
|
7 |
6
|
pconncn |
|
8 |
|
eqid |
|
9 |
8
|
pconncn |
|
10 |
7 9
|
anim12i |
|
11 |
5 10
|
sylbir |
|
12 |
|
reeanv |
|
13 |
11 12
|
sylibr |
|
14 |
|
iiuni |
|
15 |
|
eqid |
|
16 |
14 15
|
txcnmpt |
|
17 |
16
|
ad2antrl |
|
18 |
|
0elunit |
|
19 |
|
fveq2 |
|
20 |
|
fveq2 |
|
21 |
19 20
|
opeq12d |
|
22 |
|
opex |
|
23 |
21 15 22
|
fvmpt |
|
24 |
18 23
|
ax-mp |
|
25 |
|
simprrl |
|
26 |
25
|
simpld |
|
27 |
|
simprrr |
|
28 |
27
|
simpld |
|
29 |
26 28
|
opeq12d |
|
30 |
24 29
|
eqtrid |
|
31 |
|
1elunit |
|
32 |
|
fveq2 |
|
33 |
|
fveq2 |
|
34 |
32 33
|
opeq12d |
|
35 |
|
opex |
|
36 |
34 15 35
|
fvmpt |
|
37 |
31 36
|
ax-mp |
|
38 |
25
|
simprd |
|
39 |
27
|
simprd |
|
40 |
38 39
|
opeq12d |
|
41 |
37 40
|
eqtrid |
|
42 |
|
fveq1 |
|
43 |
42
|
eqeq1d |
|
44 |
|
fveq1 |
|
45 |
44
|
eqeq1d |
|
46 |
43 45
|
anbi12d |
|
47 |
46
|
rspcev |
|
48 |
17 30 41 47
|
syl12anc |
|
49 |
48
|
expr |
|
50 |
49
|
rexlimdvva |
|
51 |
13 50
|
mpd |
|
52 |
51
|
3expa |
|
53 |
52
|
ralrimivva |
|
54 |
53
|
ralrimivva |
|
55 |
|
eqeq2 |
|
56 |
55
|
anbi2d |
|
57 |
56
|
rexbidv |
|
58 |
57
|
ralxp |
|
59 |
|
eqeq2 |
|
60 |
59
|
anbi1d |
|
61 |
60
|
rexbidv |
|
62 |
61
|
2ralbidv |
|
63 |
58 62
|
syl5bb |
|
64 |
63
|
ralxp |
|
65 |
54 64
|
sylibr |
|
66 |
6 8
|
txuni |
|
67 |
1 2 66
|
syl2an |
|
68 |
67
|
raleqdv |
|
69 |
67 68
|
raleqbidv |
|
70 |
65 69
|
mpbid |
|
71 |
|
eqid |
|
72 |
71
|
ispconn |
|
73 |
4 70 72
|
sylanbrc |
|