Metamath Proof Explorer


Theorem txpconn

Description: The topological product of two path-connected spaces is path-connected. (Contributed by Mario Carneiro, 12-Feb-2015)

Ref Expression
Assertion txpconn RPConnSPConnR×tSPConn

Proof

Step Hyp Ref Expression
1 pconntop RPConnRTop
2 pconntop SPConnSTop
3 txtop RTopSTopR×tSTop
4 1 2 3 syl2an RPConnSPConnR×tSTop
5 an6 RPConnxRzRSPConnySwSRPConnSPConnxRySzRwS
6 eqid R=R
7 6 pconncn RPConnxRzRgIICnRg0=xg1=z
8 eqid S=S
9 8 pconncn SPConnySwShIICnSh0=yh1=w
10 7 9 anim12i RPConnxRzRSPConnySwSgIICnRg0=xg1=zhIICnSh0=yh1=w
11 5 10 sylbir RPConnSPConnxRySzRwSgIICnRg0=xg1=zhIICnSh0=yh1=w
12 reeanv gIICnRhIICnSg0=xg1=zh0=yh1=wgIICnRg0=xg1=zhIICnSh0=yh1=w
13 11 12 sylibr RPConnSPConnxRySzRwSgIICnRhIICnSg0=xg1=zh0=yh1=w
14 iiuni 01=II
15 eqid t01gtht=t01gtht
16 14 15 txcnmpt gIICnRhIICnSt01gthtIICnR×tS
17 16 ad2antrl RPConnSPConnxRySzRwSgIICnRhIICnSg0=xg1=zh0=yh1=wt01gthtIICnR×tS
18 0elunit 001
19 fveq2 t=0gt=g0
20 fveq2 t=0ht=h0
21 19 20 opeq12d t=0gtht=g0h0
22 opex g0h0V
23 21 15 22 fvmpt 001t01gtht0=g0h0
24 18 23 ax-mp t01gtht0=g0h0
25 simprrl RPConnSPConnxRySzRwSgIICnRhIICnSg0=xg1=zh0=yh1=wg0=xg1=z
26 25 simpld RPConnSPConnxRySzRwSgIICnRhIICnSg0=xg1=zh0=yh1=wg0=x
27 simprrr RPConnSPConnxRySzRwSgIICnRhIICnSg0=xg1=zh0=yh1=wh0=yh1=w
28 27 simpld RPConnSPConnxRySzRwSgIICnRhIICnSg0=xg1=zh0=yh1=wh0=y
29 26 28 opeq12d RPConnSPConnxRySzRwSgIICnRhIICnSg0=xg1=zh0=yh1=wg0h0=xy
30 24 29 eqtrid RPConnSPConnxRySzRwSgIICnRhIICnSg0=xg1=zh0=yh1=wt01gtht0=xy
31 1elunit 101
32 fveq2 t=1gt=g1
33 fveq2 t=1ht=h1
34 32 33 opeq12d t=1gtht=g1h1
35 opex g1h1V
36 34 15 35 fvmpt 101t01gtht1=g1h1
37 31 36 ax-mp t01gtht1=g1h1
38 25 simprd RPConnSPConnxRySzRwSgIICnRhIICnSg0=xg1=zh0=yh1=wg1=z
39 27 simprd RPConnSPConnxRySzRwSgIICnRhIICnSg0=xg1=zh0=yh1=wh1=w
40 38 39 opeq12d RPConnSPConnxRySzRwSgIICnRhIICnSg0=xg1=zh0=yh1=wg1h1=zw
41 37 40 eqtrid RPConnSPConnxRySzRwSgIICnRhIICnSg0=xg1=zh0=yh1=wt01gtht1=zw
42 fveq1 f=t01gthtf0=t01gtht0
43 42 eqeq1d f=t01gthtf0=xyt01gtht0=xy
44 fveq1 f=t01gthtf1=t01gtht1
45 44 eqeq1d f=t01gthtf1=zwt01gtht1=zw
46 43 45 anbi12d f=t01gthtf0=xyf1=zwt01gtht0=xyt01gtht1=zw
47 46 rspcev t01gthtIICnR×tSt01gtht0=xyt01gtht1=zwfIICnR×tSf0=xyf1=zw
48 17 30 41 47 syl12anc RPConnSPConnxRySzRwSgIICnRhIICnSg0=xg1=zh0=yh1=wfIICnR×tSf0=xyf1=zw
49 48 expr RPConnSPConnxRySzRwSgIICnRhIICnSg0=xg1=zh0=yh1=wfIICnR×tSf0=xyf1=zw
50 49 rexlimdvva RPConnSPConnxRySzRwSgIICnRhIICnSg0=xg1=zh0=yh1=wfIICnR×tSf0=xyf1=zw
51 13 50 mpd RPConnSPConnxRySzRwSfIICnR×tSf0=xyf1=zw
52 51 3expa RPConnSPConnxRySzRwSfIICnR×tSf0=xyf1=zw
53 52 ralrimivva RPConnSPConnxRySzRwSfIICnR×tSf0=xyf1=zw
54 53 ralrimivva RPConnSPConnxRySzRwSfIICnR×tSf0=xyf1=zw
55 eqeq2 v=zwf1=vf1=zw
56 55 anbi2d v=zwf0=uf1=vf0=uf1=zw
57 56 rexbidv v=zwfIICnR×tSf0=uf1=vfIICnR×tSf0=uf1=zw
58 57 ralxp vR×SfIICnR×tSf0=uf1=vzRwSfIICnR×tSf0=uf1=zw
59 eqeq2 u=xyf0=uf0=xy
60 59 anbi1d u=xyf0=uf1=zwf0=xyf1=zw
61 60 rexbidv u=xyfIICnR×tSf0=uf1=zwfIICnR×tSf0=xyf1=zw
62 61 2ralbidv u=xyzRwSfIICnR×tSf0=uf1=zwzRwSfIICnR×tSf0=xyf1=zw
63 58 62 bitrid u=xyvR×SfIICnR×tSf0=uf1=vzRwSfIICnR×tSf0=xyf1=zw
64 63 ralxp uR×SvR×SfIICnR×tSf0=uf1=vxRySzRwSfIICnR×tSf0=xyf1=zw
65 54 64 sylibr RPConnSPConnuR×SvR×SfIICnR×tSf0=uf1=v
66 6 8 txuni RTopSTopR×S=R×tS
67 1 2 66 syl2an RPConnSPConnR×S=R×tS
68 67 raleqdv RPConnSPConnvR×SfIICnR×tSf0=uf1=vvR×tSfIICnR×tSf0=uf1=v
69 67 68 raleqbidv RPConnSPConnuR×SvR×SfIICnR×tSf0=uf1=vuR×tSvR×tSfIICnR×tSf0=uf1=v
70 65 69 mpbid RPConnSPConnuR×tSvR×tSfIICnR×tSf0=uf1=v
71 eqid R×tS=R×tS
72 71 ispconn R×tSPConnR×tSTopuR×tSvR×tSfIICnR×tSf0=uf1=v
73 4 70 72 sylanbrc RPConnSPConnR×tSPConn