Description: The topological product of two path-connected spaces is path-connected. (Contributed by Mario Carneiro, 12-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | txpconn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pconntop | |
|
2 | pconntop | |
|
3 | txtop | |
|
4 | 1 2 3 | syl2an | |
5 | an6 | |
|
6 | eqid | |
|
7 | 6 | pconncn | |
8 | eqid | |
|
9 | 8 | pconncn | |
10 | 7 9 | anim12i | |
11 | 5 10 | sylbir | |
12 | reeanv | |
|
13 | 11 12 | sylibr | |
14 | iiuni | |
|
15 | eqid | |
|
16 | 14 15 | txcnmpt | |
17 | 16 | ad2antrl | |
18 | 0elunit | |
|
19 | fveq2 | |
|
20 | fveq2 | |
|
21 | 19 20 | opeq12d | |
22 | opex | |
|
23 | 21 15 22 | fvmpt | |
24 | 18 23 | ax-mp | |
25 | simprrl | |
|
26 | 25 | simpld | |
27 | simprrr | |
|
28 | 27 | simpld | |
29 | 26 28 | opeq12d | |
30 | 24 29 | eqtrid | |
31 | 1elunit | |
|
32 | fveq2 | |
|
33 | fveq2 | |
|
34 | 32 33 | opeq12d | |
35 | opex | |
|
36 | 34 15 35 | fvmpt | |
37 | 31 36 | ax-mp | |
38 | 25 | simprd | |
39 | 27 | simprd | |
40 | 38 39 | opeq12d | |
41 | 37 40 | eqtrid | |
42 | fveq1 | |
|
43 | 42 | eqeq1d | |
44 | fveq1 | |
|
45 | 44 | eqeq1d | |
46 | 43 45 | anbi12d | |
47 | 46 | rspcev | |
48 | 17 30 41 47 | syl12anc | |
49 | 48 | expr | |
50 | 49 | rexlimdvva | |
51 | 13 50 | mpd | |
52 | 51 | 3expa | |
53 | 52 | ralrimivva | |
54 | 53 | ralrimivva | |
55 | eqeq2 | |
|
56 | 55 | anbi2d | |
57 | 56 | rexbidv | |
58 | 57 | ralxp | |
59 | eqeq2 | |
|
60 | 59 | anbi1d | |
61 | 60 | rexbidv | |
62 | 61 | 2ralbidv | |
63 | 58 62 | bitrid | |
64 | 63 | ralxp | |
65 | 54 64 | sylibr | |
66 | 6 8 | txuni | |
67 | 1 2 66 | syl2an | |
68 | 67 | raleqdv | |
69 | 67 68 | raleqbidv | |
70 | 65 69 | mpbid | |
71 | eqid | |
|
72 | 71 | ispconn | |
73 | 4 70 72 | sylanbrc | |