Metamath Proof Explorer


Theorem txpconn

Description: The topological product of two path-connected spaces is path-connected. (Contributed by Mario Carneiro, 12-Feb-2015)

Ref Expression
Assertion txpconn R PConn S PConn R × t S PConn

Proof

Step Hyp Ref Expression
1 pconntop R PConn R Top
2 pconntop S PConn S Top
3 txtop R Top S Top R × t S Top
4 1 2 3 syl2an R PConn S PConn R × t S Top
5 an6 R PConn x R z R S PConn y S w S R PConn S PConn x R y S z R w S
6 eqid R = R
7 6 pconncn R PConn x R z R g II Cn R g 0 = x g 1 = z
8 eqid S = S
9 8 pconncn S PConn y S w S h II Cn S h 0 = y h 1 = w
10 7 9 anim12i R PConn x R z R S PConn y S w S g II Cn R g 0 = x g 1 = z h II Cn S h 0 = y h 1 = w
11 5 10 sylbir R PConn S PConn x R y S z R w S g II Cn R g 0 = x g 1 = z h II Cn S h 0 = y h 1 = w
12 reeanv g II Cn R h II Cn S g 0 = x g 1 = z h 0 = y h 1 = w g II Cn R g 0 = x g 1 = z h II Cn S h 0 = y h 1 = w
13 11 12 sylibr R PConn S PConn x R y S z R w S g II Cn R h II Cn S g 0 = x g 1 = z h 0 = y h 1 = w
14 iiuni 0 1 = II
15 eqid t 0 1 g t h t = t 0 1 g t h t
16 14 15 txcnmpt g II Cn R h II Cn S t 0 1 g t h t II Cn R × t S
17 16 ad2antrl R PConn S PConn x R y S z R w S g II Cn R h II Cn S g 0 = x g 1 = z h 0 = y h 1 = w t 0 1 g t h t II Cn R × t S
18 0elunit 0 0 1
19 fveq2 t = 0 g t = g 0
20 fveq2 t = 0 h t = h 0
21 19 20 opeq12d t = 0 g t h t = g 0 h 0
22 opex g 0 h 0 V
23 21 15 22 fvmpt 0 0 1 t 0 1 g t h t 0 = g 0 h 0
24 18 23 ax-mp t 0 1 g t h t 0 = g 0 h 0
25 simprrl R PConn S PConn x R y S z R w S g II Cn R h II Cn S g 0 = x g 1 = z h 0 = y h 1 = w g 0 = x g 1 = z
26 25 simpld R PConn S PConn x R y S z R w S g II Cn R h II Cn S g 0 = x g 1 = z h 0 = y h 1 = w g 0 = x
27 simprrr R PConn S PConn x R y S z R w S g II Cn R h II Cn S g 0 = x g 1 = z h 0 = y h 1 = w h 0 = y h 1 = w
28 27 simpld R PConn S PConn x R y S z R w S g II Cn R h II Cn S g 0 = x g 1 = z h 0 = y h 1 = w h 0 = y
29 26 28 opeq12d R PConn S PConn x R y S z R w S g II Cn R h II Cn S g 0 = x g 1 = z h 0 = y h 1 = w g 0 h 0 = x y
30 24 29 eqtrid R PConn S PConn x R y S z R w S g II Cn R h II Cn S g 0 = x g 1 = z h 0 = y h 1 = w t 0 1 g t h t 0 = x y
31 1elunit 1 0 1
32 fveq2 t = 1 g t = g 1
33 fveq2 t = 1 h t = h 1
34 32 33 opeq12d t = 1 g t h t = g 1 h 1
35 opex g 1 h 1 V
36 34 15 35 fvmpt 1 0 1 t 0 1 g t h t 1 = g 1 h 1
37 31 36 ax-mp t 0 1 g t h t 1 = g 1 h 1
38 25 simprd R PConn S PConn x R y S z R w S g II Cn R h II Cn S g 0 = x g 1 = z h 0 = y h 1 = w g 1 = z
39 27 simprd R PConn S PConn x R y S z R w S g II Cn R h II Cn S g 0 = x g 1 = z h 0 = y h 1 = w h 1 = w
40 38 39 opeq12d R PConn S PConn x R y S z R w S g II Cn R h II Cn S g 0 = x g 1 = z h 0 = y h 1 = w g 1 h 1 = z w
41 37 40 eqtrid R PConn S PConn x R y S z R w S g II Cn R h II Cn S g 0 = x g 1 = z h 0 = y h 1 = w t 0 1 g t h t 1 = z w
42 fveq1 f = t 0 1 g t h t f 0 = t 0 1 g t h t 0
43 42 eqeq1d f = t 0 1 g t h t f 0 = x y t 0 1 g t h t 0 = x y
44 fveq1 f = t 0 1 g t h t f 1 = t 0 1 g t h t 1
45 44 eqeq1d f = t 0 1 g t h t f 1 = z w t 0 1 g t h t 1 = z w
46 43 45 anbi12d f = t 0 1 g t h t f 0 = x y f 1 = z w t 0 1 g t h t 0 = x y t 0 1 g t h t 1 = z w
47 46 rspcev t 0 1 g t h t II Cn R × t S t 0 1 g t h t 0 = x y t 0 1 g t h t 1 = z w f II Cn R × t S f 0 = x y f 1 = z w
48 17 30 41 47 syl12anc R PConn S PConn x R y S z R w S g II Cn R h II Cn S g 0 = x g 1 = z h 0 = y h 1 = w f II Cn R × t S f 0 = x y f 1 = z w
49 48 expr R PConn S PConn x R y S z R w S g II Cn R h II Cn S g 0 = x g 1 = z h 0 = y h 1 = w f II Cn R × t S f 0 = x y f 1 = z w
50 49 rexlimdvva R PConn S PConn x R y S z R w S g II Cn R h II Cn S g 0 = x g 1 = z h 0 = y h 1 = w f II Cn R × t S f 0 = x y f 1 = z w
51 13 50 mpd R PConn S PConn x R y S z R w S f II Cn R × t S f 0 = x y f 1 = z w
52 51 3expa R PConn S PConn x R y S z R w S f II Cn R × t S f 0 = x y f 1 = z w
53 52 ralrimivva R PConn S PConn x R y S z R w S f II Cn R × t S f 0 = x y f 1 = z w
54 53 ralrimivva R PConn S PConn x R y S z R w S f II Cn R × t S f 0 = x y f 1 = z w
55 eqeq2 v = z w f 1 = v f 1 = z w
56 55 anbi2d v = z w f 0 = u f 1 = v f 0 = u f 1 = z w
57 56 rexbidv v = z w f II Cn R × t S f 0 = u f 1 = v f II Cn R × t S f 0 = u f 1 = z w
58 57 ralxp v R × S f II Cn R × t S f 0 = u f 1 = v z R w S f II Cn R × t S f 0 = u f 1 = z w
59 eqeq2 u = x y f 0 = u f 0 = x y
60 59 anbi1d u = x y f 0 = u f 1 = z w f 0 = x y f 1 = z w
61 60 rexbidv u = x y f II Cn R × t S f 0 = u f 1 = z w f II Cn R × t S f 0 = x y f 1 = z w
62 61 2ralbidv u = x y z R w S f II Cn R × t S f 0 = u f 1 = z w z R w S f II Cn R × t S f 0 = x y f 1 = z w
63 58 62 syl5bb u = x y v R × S f II Cn R × t S f 0 = u f 1 = v z R w S f II Cn R × t S f 0 = x y f 1 = z w
64 63 ralxp u R × S v R × S f II Cn R × t S f 0 = u f 1 = v x R y S z R w S f II Cn R × t S f 0 = x y f 1 = z w
65 54 64 sylibr R PConn S PConn u R × S v R × S f II Cn R × t S f 0 = u f 1 = v
66 6 8 txuni R Top S Top R × S = R × t S
67 1 2 66 syl2an R PConn S PConn R × S = R × t S
68 67 raleqdv R PConn S PConn v R × S f II Cn R × t S f 0 = u f 1 = v v R × t S f II Cn R × t S f 0 = u f 1 = v
69 67 68 raleqbidv R PConn S PConn u R × S v R × S f II Cn R × t S f 0 = u f 1 = v u R × t S v R × t S f II Cn R × t S f 0 = u f 1 = v
70 65 69 mpbid R PConn S PConn u R × t S v R × t S f II Cn R × t S f 0 = u f 1 = v
71 eqid R × t S = R × t S
72 71 ispconn R × t S PConn R × t S Top u R × t S v R × t S f II Cn R × t S f 0 = u f 1 = v
73 4 70 72 sylanbrc R PConn S PConn R × t S PConn