| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sconnpconn |
|
| 2 |
|
sconnpconn |
|
| 3 |
|
txpconn |
|
| 4 |
1 2 3
|
syl2an |
|
| 5 |
|
simpll |
|
| 6 |
|
simprl |
|
| 7 |
|
sconntop |
|
| 8 |
7
|
ad2antrr |
|
| 9 |
|
eqid |
|
| 10 |
9
|
toptopon |
|
| 11 |
8 10
|
sylib |
|
| 12 |
|
sconntop |
|
| 13 |
12
|
ad2antlr |
|
| 14 |
|
eqid |
|
| 15 |
14
|
toptopon |
|
| 16 |
13 15
|
sylib |
|
| 17 |
|
tx1cn |
|
| 18 |
11 16 17
|
syl2anc |
|
| 19 |
|
cnco |
|
| 20 |
6 18 19
|
syl2anc |
|
| 21 |
|
simprr |
|
| 22 |
21
|
fveq2d |
|
| 23 |
|
iitopon |
|
| 24 |
23
|
a1i |
|
| 25 |
|
txtopon |
|
| 26 |
11 16 25
|
syl2anc |
|
| 27 |
|
cnf2 |
|
| 28 |
24 26 6 27
|
syl3anc |
|
| 29 |
|
0elunit |
|
| 30 |
|
fvco3 |
|
| 31 |
28 29 30
|
sylancl |
|
| 32 |
|
1elunit |
|
| 33 |
|
fvco3 |
|
| 34 |
28 32 33
|
sylancl |
|
| 35 |
22 31 34
|
3eqtr4d |
|
| 36 |
|
sconnpht |
|
| 37 |
5 20 35 36
|
syl3anc |
|
| 38 |
|
isphtpc |
|
| 39 |
37 38
|
sylib |
|
| 40 |
39
|
simp3d |
|
| 41 |
|
n0 |
|
| 42 |
40 41
|
sylib |
|
| 43 |
|
simplr |
|
| 44 |
|
tx2cn |
|
| 45 |
11 16 44
|
syl2anc |
|
| 46 |
|
cnco |
|
| 47 |
6 45 46
|
syl2anc |
|
| 48 |
21
|
fveq2d |
|
| 49 |
|
fvco3 |
|
| 50 |
28 29 49
|
sylancl |
|
| 51 |
|
fvco3 |
|
| 52 |
28 32 51
|
sylancl |
|
| 53 |
48 50 52
|
3eqtr4d |
|
| 54 |
|
sconnpht |
|
| 55 |
43 47 53 54
|
syl3anc |
|
| 56 |
|
isphtpc |
|
| 57 |
55 56
|
sylib |
|
| 58 |
57
|
simp3d |
|
| 59 |
|
n0 |
|
| 60 |
58 59
|
sylib |
|
| 61 |
|
exdistrv |
|
| 62 |
8
|
adantr |
|
| 63 |
13
|
adantr |
|
| 64 |
6
|
adantr |
|
| 65 |
|
eqid |
|
| 66 |
|
eqid |
|
| 67 |
|
simprl |
|
| 68 |
|
simprr |
|
| 69 |
62 63 64 65 66 67 68
|
txsconnlem |
|
| 70 |
69
|
ex |
|
| 71 |
70
|
exlimdvv |
|
| 72 |
61 71
|
biimtrrid |
|
| 73 |
42 60 72
|
mp2and |
|
| 74 |
73
|
expr |
|
| 75 |
74
|
ralrimiva |
|
| 76 |
|
issconn |
|
| 77 |
4 75 76
|
sylanbrc |
|