Metamath Proof Explorer


Theorem uniiccvol

Description: An almost-disjoint union of closed intervals (disjoint interiors) has volume equal to the sum of the volume of the intervals. (This proof does not use countable choice, unlike voliun .) (Contributed by Mario Carneiro, 25-Mar-2015)

Ref Expression
Hypotheses uniioombl.1 φF:2
uniioombl.2 φDisjx.Fx
uniioombl.3 S=seq1+absF
Assertion uniiccvol φvol*ran.F=supranS*<

Proof

Step Hyp Ref Expression
1 uniioombl.1 φF:2
2 uniioombl.2 φDisjx.Fx
3 uniioombl.3 S=seq1+absF
4 ovolficcss F:2ran.F
5 1 4 syl φran.F
6 ovolcl ran.Fvol*ran.F*
7 5 6 syl φvol*ran.F*
8 eqid absF=absF
9 8 3 ovolsf F:2S:0+∞
10 1 9 syl φS:0+∞
11 10 frnd φranS0+∞
12 icossxr 0+∞*
13 11 12 sstrdi φranS*
14 supxrcl ranS*supranS*<*
15 13 14 syl φsupranS*<*
16 ssid ran.Fran.F
17 3 ovollb2 F:2ran.Fran.Fvol*ran.FsupranS*<
18 1 16 17 sylancl φvol*ran.FsupranS*<
19 1 2 3 uniioovol φvol*ran.F=supranS*<
20 ioossicc 1stFx2ndFx1stFx2ndFx
21 df-ov 1stFx2ndFx=.1stFx2ndFx
22 df-ov 1stFx2ndFx=.1stFx2ndFx
23 20 21 22 3sstr3i .1stFx2ndFx.1stFx2ndFx
24 23 a1i F:2x.1stFx2ndFx.1stFx2ndFx
25 ffvelcdm F:2xFx2
26 25 elin2d F:2xFx2
27 1st2nd2 Fx2Fx=1stFx2ndFx
28 26 27 syl F:2xFx=1stFx2ndFx
29 28 fveq2d F:2x.Fx=.1stFx2ndFx
30 28 fveq2d F:2x.Fx=.1stFx2ndFx
31 24 29 30 3sstr4d F:2x.Fx.Fx
32 fvco3 F:2x.Fx=.Fx
33 fvco3 F:2x.Fx=.Fx
34 31 32 33 3sstr4d F:2x.Fx.Fx
35 1 34 sylan φx.Fx.Fx
36 35 ralrimiva φx.Fx.Fx
37 ss2iun x.Fx.Fxx.Fxx.Fx
38 36 37 syl φx.Fxx.Fx
39 ioof .:*×*𝒫
40 ffn .:*×*𝒫.Fn*×*
41 39 40 ax-mp .Fn*×*
42 inss2 22
43 rexpssxrxp 2*×*
44 42 43 sstri 2*×*
45 fss F:22*×*F:*×*
46 1 44 45 sylancl φF:*×*
47 fnfco .Fn*×*F:*×*.FFn
48 41 46 47 sylancr φ.FFn
49 fniunfv .FFnx.Fx=ran.F
50 48 49 syl φx.Fx=ran.F
51 iccf .:*×*𝒫*
52 ffn .:*×*𝒫*.Fn*×*
53 51 52 ax-mp .Fn*×*
54 fnfco .Fn*×*F:*×*.FFn
55 53 46 54 sylancr φ.FFn
56 fniunfv .FFnx.Fx=ran.F
57 55 56 syl φx.Fx=ran.F
58 38 50 57 3sstr3d φran.Fran.F
59 ovolss ran.Fran.Fran.Fvol*ran.Fvol*ran.F
60 58 5 59 syl2anc φvol*ran.Fvol*ran.F
61 19 60 eqbrtrrd φsupranS*<vol*ran.F
62 7 15 18 61 xrletrid φvol*ran.F=supranS*<