Description: An almost-disjoint union of closed intervals (disjoint interiors) has volume equal to the sum of the volume of the intervals. (This proof does not use countable choice, unlike voliun .) (Contributed by Mario Carneiro, 25-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | uniioombl.1 | |
|
uniioombl.2 | |
||
uniioombl.3 | |
||
Assertion | uniiccvol | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniioombl.1 | |
|
2 | uniioombl.2 | |
|
3 | uniioombl.3 | |
|
4 | ovolficcss | |
|
5 | 1 4 | syl | |
6 | ovolcl | |
|
7 | 5 6 | syl | |
8 | eqid | |
|
9 | 8 3 | ovolsf | |
10 | 1 9 | syl | |
11 | 10 | frnd | |
12 | icossxr | |
|
13 | 11 12 | sstrdi | |
14 | supxrcl | |
|
15 | 13 14 | syl | |
16 | ssid | |
|
17 | 3 | ovollb2 | |
18 | 1 16 17 | sylancl | |
19 | 1 2 3 | uniioovol | |
20 | ioossicc | |
|
21 | df-ov | |
|
22 | df-ov | |
|
23 | 20 21 22 | 3sstr3i | |
24 | 23 | a1i | |
25 | ffvelcdm | |
|
26 | 25 | elin2d | |
27 | 1st2nd2 | |
|
28 | 26 27 | syl | |
29 | 28 | fveq2d | |
30 | 28 | fveq2d | |
31 | 24 29 30 | 3sstr4d | |
32 | fvco3 | |
|
33 | fvco3 | |
|
34 | 31 32 33 | 3sstr4d | |
35 | 1 34 | sylan | |
36 | 35 | ralrimiva | |
37 | ss2iun | |
|
38 | 36 37 | syl | |
39 | ioof | |
|
40 | ffn | |
|
41 | 39 40 | ax-mp | |
42 | inss2 | |
|
43 | rexpssxrxp | |
|
44 | 42 43 | sstri | |
45 | fss | |
|
46 | 1 44 45 | sylancl | |
47 | fnfco | |
|
48 | 41 46 47 | sylancr | |
49 | fniunfv | |
|
50 | 48 49 | syl | |
51 | iccf | |
|
52 | ffn | |
|
53 | 51 52 | ax-mp | |
54 | fnfco | |
|
55 | 53 46 54 | sylancr | |
56 | fniunfv | |
|
57 | 55 56 | syl | |
58 | 38 50 57 | 3sstr3d | |
59 | ovolss | |
|
60 | 58 5 59 | syl2anc | |
61 | 19 60 | eqbrtrrd | |
62 | 7 15 18 61 | xrletrid | |