Metamath Proof Explorer


Theorem usgrwwlks2on

Description: A walk of length 2 between two vertices as word in a simple graph. This theorem is analogous to umgrwwlks2on except it talks about simple graphs and therefore does not require the Axiom of Choice for its proof. (Contributed by Ender Ting, 29-Jan-2026)

Ref Expression
Hypotheses s3wwlks2on.v V = Vtx G
usgrwwlks2on.e E = Edg G
Assertion usgrwwlks2on G USGraph A V B V C V ⟨“ ABC ”⟩ A 2 WWalksNOn G C A B E B C E

Proof

Step Hyp Ref Expression
1 s3wwlks2on.v V = Vtx G
2 usgrwwlks2on.e E = Edg G
3 usgruspgr G USGraph G USHGraph
4 3 adantr G USGraph A V B V C V G USHGraph
5 simpr1 G USGraph A V B V C V A V
6 simpr3 G USGraph A V B V C V C V
7 1 sps3wwlks2on G USHGraph A V C V ⟨“ ABC ”⟩ A 2 WWalksNOn G C f f Walks G ⟨“ ABC ”⟩ f = 2
8 4 5 6 7 syl3anc G USGraph A V B V C V ⟨“ ABC ”⟩ A 2 WWalksNOn G C f f Walks G ⟨“ ABC ”⟩ f = 2
9 usgrupgr G USGraph G UPGraph
10 eqid iEdg G = iEdg G
11 1 10 upgr2wlk G UPGraph f Walks G ⟨“ ABC ”⟩ f = 2 f : 0 ..^ 2 dom iEdg G ⟨“ ABC ”⟩ : 0 2 V iEdg G f 0 = ⟨“ ABC ”⟩ 0 ⟨“ ABC ”⟩ 1 iEdg G f 1 = ⟨“ ABC ”⟩ 1 ⟨“ ABC ”⟩ 2
12 9 11 syl G USGraph f Walks G ⟨“ ABC ”⟩ f = 2 f : 0 ..^ 2 dom iEdg G ⟨“ ABC ”⟩ : 0 2 V iEdg G f 0 = ⟨“ ABC ”⟩ 0 ⟨“ ABC ”⟩ 1 iEdg G f 1 = ⟨“ ABC ”⟩ 1 ⟨“ ABC ”⟩ 2
13 12 adantr G USGraph A V B V C V f Walks G ⟨“ ABC ”⟩ f = 2 f : 0 ..^ 2 dom iEdg G ⟨“ ABC ”⟩ : 0 2 V iEdg G f 0 = ⟨“ ABC ”⟩ 0 ⟨“ ABC ”⟩ 1 iEdg G f 1 = ⟨“ ABC ”⟩ 1 ⟨“ ABC ”⟩ 2
14 s3fv0 A V ⟨“ ABC ”⟩ 0 = A
15 14 3ad2ant1 A V B V C V ⟨“ ABC ”⟩ 0 = A
16 s3fv1 B V ⟨“ ABC ”⟩ 1 = B
17 16 3ad2ant2 A V B V C V ⟨“ ABC ”⟩ 1 = B
18 15 17 preq12d A V B V C V ⟨“ ABC ”⟩ 0 ⟨“ ABC ”⟩ 1 = A B
19 18 eqeq2d A V B V C V iEdg G f 0 = ⟨“ ABC ”⟩ 0 ⟨“ ABC ”⟩ 1 iEdg G f 0 = A B
20 s3fv2 C V ⟨“ ABC ”⟩ 2 = C
21 20 3ad2ant3 A V B V C V ⟨“ ABC ”⟩ 2 = C
22 17 21 preq12d A V B V C V ⟨“ ABC ”⟩ 1 ⟨“ ABC ”⟩ 2 = B C
23 22 eqeq2d A V B V C V iEdg G f 1 = ⟨“ ABC ”⟩ 1 ⟨“ ABC ”⟩ 2 iEdg G f 1 = B C
24 19 23 anbi12d A V B V C V iEdg G f 0 = ⟨“ ABC ”⟩ 0 ⟨“ ABC ”⟩ 1 iEdg G f 1 = ⟨“ ABC ”⟩ 1 ⟨“ ABC ”⟩ 2 iEdg G f 0 = A B iEdg G f 1 = B C
25 24 adantl G USGraph A V B V C V iEdg G f 0 = ⟨“ ABC ”⟩ 0 ⟨“ ABC ”⟩ 1 iEdg G f 1 = ⟨“ ABC ”⟩ 1 ⟨“ ABC ”⟩ 2 iEdg G f 0 = A B iEdg G f 1 = B C
26 25 3anbi3d G USGraph A V B V C V f : 0 ..^ 2 dom iEdg G ⟨“ ABC ”⟩ : 0 2 V iEdg G f 0 = ⟨“ ABC ”⟩ 0 ⟨“ ABC ”⟩ 1 iEdg G f 1 = ⟨“ ABC ”⟩ 1 ⟨“ ABC ”⟩ 2 f : 0 ..^ 2 dom iEdg G ⟨“ ABC ”⟩ : 0 2 V iEdg G f 0 = A B iEdg G f 1 = B C
27 usgruhgr G USGraph G UHGraph
28 10 uhgrfun G UHGraph Fun iEdg G
29 fdmrn Fun iEdg G iEdg G : dom iEdg G ran iEdg G
30 simpr f : 0 ..^ 2 dom iEdg G iEdg G : dom iEdg G ran iEdg G iEdg G : dom iEdg G ran iEdg G
31 id f : 0 ..^ 2 dom iEdg G f : 0 ..^ 2 dom iEdg G
32 c0ex 0 V
33 32 prid1 0 0 1
34 fzo0to2pr 0 ..^ 2 = 0 1
35 33 34 eleqtrri 0 0 ..^ 2
36 35 a1i f : 0 ..^ 2 dom iEdg G 0 0 ..^ 2
37 31 36 ffvelcdmd f : 0 ..^ 2 dom iEdg G f 0 dom iEdg G
38 37 adantr f : 0 ..^ 2 dom iEdg G iEdg G : dom iEdg G ran iEdg G f 0 dom iEdg G
39 30 38 ffvelcdmd f : 0 ..^ 2 dom iEdg G iEdg G : dom iEdg G ran iEdg G iEdg G f 0 ran iEdg G
40 1ex 1 V
41 40 prid2 1 0 1
42 41 34 eleqtrri 1 0 ..^ 2
43 42 a1i f : 0 ..^ 2 dom iEdg G 1 0 ..^ 2
44 31 43 ffvelcdmd f : 0 ..^ 2 dom iEdg G f 1 dom iEdg G
45 44 adantr f : 0 ..^ 2 dom iEdg G iEdg G : dom iEdg G ran iEdg G f 1 dom iEdg G
46 30 45 ffvelcdmd f : 0 ..^ 2 dom iEdg G iEdg G : dom iEdg G ran iEdg G iEdg G f 1 ran iEdg G
47 39 46 jca f : 0 ..^ 2 dom iEdg G iEdg G : dom iEdg G ran iEdg G iEdg G f 0 ran iEdg G iEdg G f 1 ran iEdg G
48 47 ex f : 0 ..^ 2 dom iEdg G iEdg G : dom iEdg G ran iEdg G iEdg G f 0 ran iEdg G iEdg G f 1 ran iEdg G
49 48 3ad2ant1 f : 0 ..^ 2 dom iEdg G ⟨“ ABC ”⟩ : 0 2 V iEdg G f 0 = A B iEdg G f 1 = B C iEdg G : dom iEdg G ran iEdg G iEdg G f 0 ran iEdg G iEdg G f 1 ran iEdg G
50 49 com12 iEdg G : dom iEdg G ran iEdg G f : 0 ..^ 2 dom iEdg G ⟨“ ABC ”⟩ : 0 2 V iEdg G f 0 = A B iEdg G f 1 = B C iEdg G f 0 ran iEdg G iEdg G f 1 ran iEdg G
51 29 50 sylbi Fun iEdg G f : 0 ..^ 2 dom iEdg G ⟨“ ABC ”⟩ : 0 2 V iEdg G f 0 = A B iEdg G f 1 = B C iEdg G f 0 ran iEdg G iEdg G f 1 ran iEdg G
52 27 28 51 3syl G USGraph f : 0 ..^ 2 dom iEdg G ⟨“ ABC ”⟩ : 0 2 V iEdg G f 0 = A B iEdg G f 1 = B C iEdg G f 0 ran iEdg G iEdg G f 1 ran iEdg G
53 52 imp G USGraph f : 0 ..^ 2 dom iEdg G ⟨“ ABC ”⟩ : 0 2 V iEdg G f 0 = A B iEdg G f 1 = B C iEdg G f 0 ran iEdg G iEdg G f 1 ran iEdg G
54 eqcom iEdg G f 0 = A B A B = iEdg G f 0
55 54 biimpi iEdg G f 0 = A B A B = iEdg G f 0
56 55 adantr iEdg G f 0 = A B iEdg G f 1 = B C A B = iEdg G f 0
57 56 3ad2ant3 f : 0 ..^ 2 dom iEdg G ⟨“ ABC ”⟩ : 0 2 V iEdg G f 0 = A B iEdg G f 1 = B C A B = iEdg G f 0
58 57 adantl G USGraph f : 0 ..^ 2 dom iEdg G ⟨“ ABC ”⟩ : 0 2 V iEdg G f 0 = A B iEdg G f 1 = B C A B = iEdg G f 0
59 edgval Edg G = ran iEdg G
60 2 59 eqtri E = ran iEdg G
61 60 a1i G USGraph f : 0 ..^ 2 dom iEdg G ⟨“ ABC ”⟩ : 0 2 V iEdg G f 0 = A B iEdg G f 1 = B C E = ran iEdg G
62 58 61 eleq12d G USGraph f : 0 ..^ 2 dom iEdg G ⟨“ ABC ”⟩ : 0 2 V iEdg G f 0 = A B iEdg G f 1 = B C A B E iEdg G f 0 ran iEdg G
63 eqcom iEdg G f 1 = B C B C = iEdg G f 1
64 63 biimpi iEdg G f 1 = B C B C = iEdg G f 1
65 64 adantl iEdg G f 0 = A B iEdg G f 1 = B C B C = iEdg G f 1
66 65 3ad2ant3 f : 0 ..^ 2 dom iEdg G ⟨“ ABC ”⟩ : 0 2 V iEdg G f 0 = A B iEdg G f 1 = B C B C = iEdg G f 1
67 66 adantl G USGraph f : 0 ..^ 2 dom iEdg G ⟨“ ABC ”⟩ : 0 2 V iEdg G f 0 = A B iEdg G f 1 = B C B C = iEdg G f 1
68 67 61 eleq12d G USGraph f : 0 ..^ 2 dom iEdg G ⟨“ ABC ”⟩ : 0 2 V iEdg G f 0 = A B iEdg G f 1 = B C B C E iEdg G f 1 ran iEdg G
69 62 68 anbi12d G USGraph f : 0 ..^ 2 dom iEdg G ⟨“ ABC ”⟩ : 0 2 V iEdg G f 0 = A B iEdg G f 1 = B C A B E B C E iEdg G f 0 ran iEdg G iEdg G f 1 ran iEdg G
70 53 69 mpbird G USGraph f : 0 ..^ 2 dom iEdg G ⟨“ ABC ”⟩ : 0 2 V iEdg G f 0 = A B iEdg G f 1 = B C A B E B C E
71 70 ex G USGraph f : 0 ..^ 2 dom iEdg G ⟨“ ABC ”⟩ : 0 2 V iEdg G f 0 = A B iEdg G f 1 = B C A B E B C E
72 71 adantr G USGraph A V B V C V f : 0 ..^ 2 dom iEdg G ⟨“ ABC ”⟩ : 0 2 V iEdg G f 0 = A B iEdg G f 1 = B C A B E B C E
73 26 72 sylbid G USGraph A V B V C V f : 0 ..^ 2 dom iEdg G ⟨“ ABC ”⟩ : 0 2 V iEdg G f 0 = ⟨“ ABC ”⟩ 0 ⟨“ ABC ”⟩ 1 iEdg G f 1 = ⟨“ ABC ”⟩ 1 ⟨“ ABC ”⟩ 2 A B E B C E
74 13 73 sylbid G USGraph A V B V C V f Walks G ⟨“ ABC ”⟩ f = 2 A B E B C E
75 74 exlimdv G USGraph A V B V C V f f Walks G ⟨“ ABC ”⟩ f = 2 A B E B C E
76 usgrumgr G USGraph G UMGraph
77 76 3ad2ant1 G USGraph A B E B C E G UMGraph
78 simp2 G USGraph A B E B C E A B E
79 simp3 G USGraph A B E B C E B C E
80 2 umgr2wlk G UMGraph A B E B C E f p f Walks G p f = 2 A = p 0 B = p 1 C = p 2
81 77 78 79 80 syl3anc G USGraph A B E B C E f p f Walks G p f = 2 A = p 0 B = p 1 C = p 2
82 wlklenvp1 f Walks G p p = f + 1
83 oveq1 f = 2 f + 1 = 2 + 1
84 2p1e3 2 + 1 = 3
85 83 84 eqtrdi f = 2 f + 1 = 3
86 85 adantr f = 2 A = p 0 B = p 1 C = p 2 f + 1 = 3
87 82 86 sylan9eq f Walks G p f = 2 A = p 0 B = p 1 C = p 2 p = 3
88 eqcom A = p 0 p 0 = A
89 eqcom B = p 1 p 1 = B
90 eqcom C = p 2 p 2 = C
91 88 89 90 3anbi123i A = p 0 B = p 1 C = p 2 p 0 = A p 1 = B p 2 = C
92 91 biimpi A = p 0 B = p 1 C = p 2 p 0 = A p 1 = B p 2 = C
93 92 adantl f = 2 A = p 0 B = p 1 C = p 2 p 0 = A p 1 = B p 2 = C
94 93 adantl f Walks G p f = 2 A = p 0 B = p 1 C = p 2 p 0 = A p 1 = B p 2 = C
95 87 94 jca f Walks G p f = 2 A = p 0 B = p 1 C = p 2 p = 3 p 0 = A p 1 = B p 2 = C
96 1 wlkpwrd f Walks G p p Word V
97 85 eqeq2d f = 2 p = f + 1 p = 3
98 97 adantl p Word V f = 2 p = f + 1 p = 3
99 simp1 p Word V p = 3 A = p 0 B = p 1 C = p 2 p Word V
100 oveq2 p = 3 0 ..^ p = 0 ..^ 3
101 fzo0to3tp 0 ..^ 3 = 0 1 2
102 100 101 eqtrdi p = 3 0 ..^ p = 0 1 2
103 32 tpid1 0 0 1 2
104 eleq2 0 ..^ p = 0 1 2 0 0 ..^ p 0 0 1 2
105 103 104 mpbiri 0 ..^ p = 0 1 2 0 0 ..^ p
106 wrdsymbcl p Word V 0 0 ..^ p p 0 V
107 105 106 sylan2 p Word V 0 ..^ p = 0 1 2 p 0 V
108 40 tpid2 1 0 1 2
109 eleq2 0 ..^ p = 0 1 2 1 0 ..^ p 1 0 1 2
110 108 109 mpbiri 0 ..^ p = 0 1 2 1 0 ..^ p
111 wrdsymbcl p Word V 1 0 ..^ p p 1 V
112 110 111 sylan2 p Word V 0 ..^ p = 0 1 2 p 1 V
113 2ex 2 V
114 113 tpid3 2 0 1 2
115 eleq2 0 ..^ p = 0 1 2 2 0 ..^ p 2 0 1 2
116 114 115 mpbiri 0 ..^ p = 0 1 2 2 0 ..^ p
117 wrdsymbcl p Word V 2 0 ..^ p p 2 V
118 116 117 sylan2 p Word V 0 ..^ p = 0 1 2 p 2 V
119 107 112 118 3jca p Word V 0 ..^ p = 0 1 2 p 0 V p 1 V p 2 V
120 102 119 sylan2 p Word V p = 3 p 0 V p 1 V p 2 V
121 120 3adant3 p Word V p = 3 A = p 0 B = p 1 C = p 2 p 0 V p 1 V p 2 V
122 eleq1 A = p 0 A V p 0 V
123 122 3ad2ant1 A = p 0 B = p 1 C = p 2 A V p 0 V
124 eleq1 B = p 1 B V p 1 V
125 124 3ad2ant2 A = p 0 B = p 1 C = p 2 B V p 1 V
126 eleq1 C = p 2 C V p 2 V
127 126 3ad2ant3 A = p 0 B = p 1 C = p 2 C V p 2 V
128 123 125 127 3anbi123d A = p 0 B = p 1 C = p 2 A V B V C V p 0 V p 1 V p 2 V
129 128 3ad2ant3 p Word V p = 3 A = p 0 B = p 1 C = p 2 A V B V C V p 0 V p 1 V p 2 V
130 121 129 mpbird p Word V p = 3 A = p 0 B = p 1 C = p 2 A V B V C V
131 99 130 jca p Word V p = 3 A = p 0 B = p 1 C = p 2 p Word V A V B V C V
132 131 3exp p Word V p = 3 A = p 0 B = p 1 C = p 2 p Word V A V B V C V
133 132 adantr p Word V f = 2 p = 3 A = p 0 B = p 1 C = p 2 p Word V A V B V C V
134 98 133 sylbid p Word V f = 2 p = f + 1 A = p 0 B = p 1 C = p 2 p Word V A V B V C V
135 134 impancom p Word V p = f + 1 f = 2 A = p 0 B = p 1 C = p 2 p Word V A V B V C V
136 135 impd p Word V p = f + 1 f = 2 A = p 0 B = p 1 C = p 2 p Word V A V B V C V
137 96 82 136 syl2anc f Walks G p f = 2 A = p 0 B = p 1 C = p 2 p Word V A V B V C V
138 137 imp f Walks G p f = 2 A = p 0 B = p 1 C = p 2 p Word V A V B V C V
139 eqwrds3 p Word V A V B V C V p = ⟨“ ABC ”⟩ p = 3 p 0 = A p 1 = B p 2 = C
140 138 139 syl f Walks G p f = 2 A = p 0 B = p 1 C = p 2 p = ⟨“ ABC ”⟩ p = 3 p 0 = A p 1 = B p 2 = C
141 95 140 mpbird f Walks G p f = 2 A = p 0 B = p 1 C = p 2 p = ⟨“ ABC ”⟩
142 141 breq2d f Walks G p f = 2 A = p 0 B = p 1 C = p 2 f Walks G p f Walks G ⟨“ ABC ”⟩
143 142 biimpd f Walks G p f = 2 A = p 0 B = p 1 C = p 2 f Walks G p f Walks G ⟨“ ABC ”⟩
144 143 ex f Walks G p f = 2 A = p 0 B = p 1 C = p 2 f Walks G p f Walks G ⟨“ ABC ”⟩
145 144 pm2.43a f Walks G p f = 2 A = p 0 B = p 1 C = p 2 f Walks G ⟨“ ABC ”⟩
146 145 3impib f Walks G p f = 2 A = p 0 B = p 1 C = p 2 f Walks G ⟨“ ABC ”⟩
147 146 adantl A V B V C V f Walks G p f = 2 A = p 0 B = p 1 C = p 2 f Walks G ⟨“ ABC ”⟩
148 simpr2 A V B V C V f Walks G p f = 2 A = p 0 B = p 1 C = p 2 f = 2
149 147 148 jca A V B V C V f Walks G p f = 2 A = p 0 B = p 1 C = p 2 f Walks G ⟨“ ABC ”⟩ f = 2
150 149 ex A V B V C V f Walks G p f = 2 A = p 0 B = p 1 C = p 2 f Walks G ⟨“ ABC ”⟩ f = 2
151 150 exlimdv A V B V C V p f Walks G p f = 2 A = p 0 B = p 1 C = p 2 f Walks G ⟨“ ABC ”⟩ f = 2
152 151 eximdv A V B V C V f p f Walks G p f = 2 A = p 0 B = p 1 C = p 2 f f Walks G ⟨“ ABC ”⟩ f = 2
153 81 152 syl5com G USGraph A B E B C E A V B V C V f f Walks G ⟨“ ABC ”⟩ f = 2
154 153 3expib G USGraph A B E B C E A V B V C V f f Walks G ⟨“ ABC ”⟩ f = 2
155 154 com23 G USGraph A V B V C V A B E B C E f f Walks G ⟨“ ABC ”⟩ f = 2
156 155 imp G USGraph A V B V C V A B E B C E f f Walks G ⟨“ ABC ”⟩ f = 2
157 75 156 impbid G USGraph A V B V C V f f Walks G ⟨“ ABC ”⟩ f = 2 A B E B C E
158 8 157 bitrd G USGraph A V B V C V ⟨“ ABC ”⟩ A 2 WWalksNOn G C A B E B C E