Metamath Proof Explorer


Theorem vdwmc

Description: The predicate " The <. R , N >. -coloring F contains a monochromatic AP of length K ". (Contributed by Mario Carneiro, 18-Aug-2014)

Ref Expression
Hypotheses vdwmc.1 X V
vdwmc.2 φ K 0
vdwmc.3 φ F : X R
Assertion vdwmc φ K MonoAP F c a d a AP K d F -1 c

Proof

Step Hyp Ref Expression
1 vdwmc.1 X V
2 vdwmc.2 φ K 0
3 vdwmc.3 φ F : X R
4 fex F : X R X V F V
5 3 1 4 sylancl φ F V
6 fveq2 k = K AP k = AP K
7 6 rneqd k = K ran AP k = ran AP K
8 cnveq f = F f -1 = F -1
9 8 imaeq1d f = F f -1 c = F -1 c
10 9 pweqd f = F 𝒫 f -1 c = 𝒫 F -1 c
11 7 10 ineqan12d k = K f = F ran AP k 𝒫 f -1 c = ran AP K 𝒫 F -1 c
12 11 neeq1d k = K f = F ran AP k 𝒫 f -1 c ran AP K 𝒫 F -1 c
13 12 exbidv k = K f = F c ran AP k 𝒫 f -1 c c ran AP K 𝒫 F -1 c
14 df-vdwmc MonoAP = k f | c ran AP k 𝒫 f -1 c
15 13 14 brabga K 0 F V K MonoAP F c ran AP K 𝒫 F -1 c
16 2 5 15 syl2anc φ K MonoAP F c ran AP K 𝒫 F -1 c
17 vdwapf K 0 AP K : × 𝒫
18 ffn AP K : × 𝒫 AP K Fn ×
19 velpw z 𝒫 F -1 c z F -1 c
20 sseq1 z = AP K w z F -1 c AP K w F -1 c
21 19 20 syl5bb z = AP K w z 𝒫 F -1 c AP K w F -1 c
22 21 rexrn AP K Fn × z ran AP K z 𝒫 F -1 c w × AP K w F -1 c
23 2 17 18 22 4syl φ z ran AP K z 𝒫 F -1 c w × AP K w F -1 c
24 elin z ran AP K 𝒫 F -1 c z ran AP K z 𝒫 F -1 c
25 24 exbii z z ran AP K 𝒫 F -1 c z z ran AP K z 𝒫 F -1 c
26 n0 ran AP K 𝒫 F -1 c z z ran AP K 𝒫 F -1 c
27 df-rex z ran AP K z 𝒫 F -1 c z z ran AP K z 𝒫 F -1 c
28 25 26 27 3bitr4ri z ran AP K z 𝒫 F -1 c ran AP K 𝒫 F -1 c
29 fveq2 w = a d AP K w = AP K a d
30 df-ov a AP K d = AP K a d
31 29 30 eqtr4di w = a d AP K w = a AP K d
32 31 sseq1d w = a d AP K w F -1 c a AP K d F -1 c
33 32 rexxp w × AP K w F -1 c a d a AP K d F -1 c
34 23 28 33 3bitr3g φ ran AP K 𝒫 F -1 c a d a AP K d F -1 c
35 34 exbidv φ c ran AP K 𝒫 F -1 c c a d a AP K d F -1 c
36 16 35 bitrd φ K MonoAP F c a d a AP K d F -1 c