Metamath Proof Explorer


Theorem wofib

Description: The only sets which are well-ordered forwards and backwards are finite sets. (Contributed by Mario Carneiro, 30-Jan-2014) (Revised by Mario Carneiro, 23-May-2015)

Ref Expression
Hypothesis wofib.1 AV
Assertion wofib ROrAAFinRWeAR-1WeA

Proof

Step Hyp Ref Expression
1 wofib.1 AV
2 wofi ROrAAFinRWeA
3 cnvso ROrAR-1OrA
4 wofi R-1OrAAFinR-1WeA
5 3 4 sylanb ROrAAFinR-1WeA
6 2 5 jca ROrAAFinRWeAR-1WeA
7 weso RWeAROrA
8 7 adantr RWeAR-1WeAROrA
9 peano2 yωsucyω
10 sucidg yωysucy
11 vex zV
12 vex yV
13 11 12 brcnv zE-1yyEz
14 epel yEzyz
15 13 14 bitri zE-1yyz
16 eleq2 z=sucyyzysucy
17 15 16 bitrid z=sucyzE-1yysucy
18 17 rspcev sucyωysucyzωzE-1y
19 9 10 18 syl2anc yωzωzE-1y
20 dfrex2 zωzE-1y¬zω¬zE-1y
21 19 20 sylib yω¬zω¬zE-1y
22 21 nrex ¬yωzω¬zE-1y
23 ordom Ordω
24 eqid OrdIsoRA=OrdIsoRA
25 24 oicl OrddomOrdIsoRA
26 ordtri1 OrdωOrddomOrdIsoRAωdomOrdIsoRA¬domOrdIsoRAω
27 23 25 26 mp2an ωdomOrdIsoRA¬domOrdIsoRAω
28 24 oion AVdomOrdIsoRAOn
29 1 28 mp1i RWeAR-1WeAωdomOrdIsoRAdomOrdIsoRAOn
30 simpr RWeAR-1WeAωdomOrdIsoRAωdomOrdIsoRA
31 29 30 ssexd RWeAR-1WeAωdomOrdIsoRAωV
32 24 oiiso AVRWeAOrdIsoRAIsomE,RdomOrdIsoRAA
33 1 32 mpan RWeAOrdIsoRAIsomE,RdomOrdIsoRAA
34 isocnv2 OrdIsoRAIsomE,RdomOrdIsoRAAOrdIsoRAIsomE-1,R-1domOrdIsoRAA
35 33 34 sylib RWeAOrdIsoRAIsomE-1,R-1domOrdIsoRAA
36 wefr R-1WeAR-1FrA
37 isofr OrdIsoRAIsomE-1,R-1domOrdIsoRAAE-1FrdomOrdIsoRAR-1FrA
38 37 biimpar OrdIsoRAIsomE-1,R-1domOrdIsoRAAR-1FrAE-1FrdomOrdIsoRA
39 35 36 38 syl2an RWeAR-1WeAE-1FrdomOrdIsoRA
40 39 adantr RWeAR-1WeAωdomOrdIsoRAE-1FrdomOrdIsoRA
41 1onn 1𝑜ω
42 ne0i 1𝑜ωω
43 41 42 mp1i RWeAR-1WeAωdomOrdIsoRAω
44 fri ωVE-1FrdomOrdIsoRAωdomOrdIsoRAωyωzω¬zE-1y
45 31 40 30 43 44 syl22anc RWeAR-1WeAωdomOrdIsoRAyωzω¬zE-1y
46 45 ex RWeAR-1WeAωdomOrdIsoRAyωzω¬zE-1y
47 27 46 biimtrrid RWeAR-1WeA¬domOrdIsoRAωyωzω¬zE-1y
48 22 47 mt3i RWeAR-1WeAdomOrdIsoRAω
49 ssid domOrdIsoRAdomOrdIsoRA
50 ssnnfi domOrdIsoRAωdomOrdIsoRAdomOrdIsoRAdomOrdIsoRAFin
51 48 49 50 sylancl RWeAR-1WeAdomOrdIsoRAFin
52 simpl RWeAR-1WeARWeA
53 24 oien AVRWeAdomOrdIsoRAA
54 1 52 53 sylancr RWeAR-1WeAdomOrdIsoRAA
55 enfi domOrdIsoRAAdomOrdIsoRAFinAFin
56 54 55 syl RWeAR-1WeAdomOrdIsoRAFinAFin
57 51 56 mpbid RWeAR-1WeAAFin
58 8 57 jca RWeAR-1WeAROrAAFin
59 6 58 impbii ROrAAFinRWeAR-1WeA