Description: The only sets which are well-ordered forwards and backwards are finite sets. (Contributed by Mario Carneiro, 30-Jan-2014) (Revised by Mario Carneiro, 23-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | wofib.1 | |
|
Assertion | wofib | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wofib.1 | |
|
2 | wofi | |
|
3 | cnvso | |
|
4 | wofi | |
|
5 | 3 4 | sylanb | |
6 | 2 5 | jca | |
7 | weso | |
|
8 | 7 | adantr | |
9 | peano2 | |
|
10 | sucidg | |
|
11 | vex | |
|
12 | vex | |
|
13 | 11 12 | brcnv | |
14 | epel | |
|
15 | 13 14 | bitri | |
16 | eleq2 | |
|
17 | 15 16 | bitrid | |
18 | 17 | rspcev | |
19 | 9 10 18 | syl2anc | |
20 | dfrex2 | |
|
21 | 19 20 | sylib | |
22 | 21 | nrex | |
23 | ordom | |
|
24 | eqid | |
|
25 | 24 | oicl | |
26 | ordtri1 | |
|
27 | 23 25 26 | mp2an | |
28 | 24 | oion | |
29 | 1 28 | mp1i | |
30 | simpr | |
|
31 | 29 30 | ssexd | |
32 | 24 | oiiso | |
33 | 1 32 | mpan | |
34 | isocnv2 | |
|
35 | 33 34 | sylib | |
36 | wefr | |
|
37 | isofr | |
|
38 | 37 | biimpar | |
39 | 35 36 38 | syl2an | |
40 | 39 | adantr | |
41 | 1onn | |
|
42 | ne0i | |
|
43 | 41 42 | mp1i | |
44 | fri | |
|
45 | 31 40 30 43 44 | syl22anc | |
46 | 45 | ex | |
47 | 27 46 | biimtrrid | |
48 | 22 47 | mt3i | |
49 | ssid | |
|
50 | ssnnfi | |
|
51 | 48 49 50 | sylancl | |
52 | simpl | |
|
53 | 24 | oien | |
54 | 1 52 53 | sylancr | |
55 | enfi | |
|
56 | 54 55 | syl | |
57 | 51 56 | mpbid | |
58 | 8 57 | jca | |
59 | 6 58 | impbii | |