| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xkopjcn.1 |  | 
						
							| 2 |  | eqid |  | 
						
							| 3 | 2 | xkotopon |  | 
						
							| 4 | 3 | 3adant3 |  | 
						
							| 5 | 1 | topopn |  | 
						
							| 6 | 5 | 3ad2ant1 |  | 
						
							| 7 |  | fconst6g |  | 
						
							| 8 | 7 | 3ad2ant2 |  | 
						
							| 9 |  | pttop |  | 
						
							| 10 | 6 8 9 | syl2anc |  | 
						
							| 11 |  | eqid |  | 
						
							| 12 | 1 11 | cnf |  | 
						
							| 13 |  | uniexg |  | 
						
							| 14 | 13 | 3ad2ant2 |  | 
						
							| 15 | 14 6 | elmapd |  | 
						
							| 16 | 12 15 | imbitrrid |  | 
						
							| 17 | 16 | ssrdv |  | 
						
							| 18 |  | simp2 |  | 
						
							| 19 |  | eqid |  | 
						
							| 20 | 19 11 | ptuniconst |  | 
						
							| 21 | 6 18 20 | syl2anc |  | 
						
							| 22 | 17 21 | sseqtrd |  | 
						
							| 23 |  | eqid |  | 
						
							| 24 | 23 | restuni |  | 
						
							| 25 | 10 22 24 | syl2anc |  | 
						
							| 26 | 25 | fveq2d |  | 
						
							| 27 | 4 26 | eleqtrd |  | 
						
							| 28 | 1 19 | xkoptsub |  | 
						
							| 29 | 28 | 3adant3 |  | 
						
							| 30 |  | eqid |  | 
						
							| 31 | 30 | cnss1 |  | 
						
							| 32 | 27 29 31 | syl2anc |  | 
						
							| 33 | 22 | resmptd |  | 
						
							| 34 |  | simp3 |  | 
						
							| 35 | 23 19 | ptpjcn |  | 
						
							| 36 | 6 8 34 35 | syl3anc |  | 
						
							| 37 |  | fvconst2g |  | 
						
							| 38 | 37 | 3adant1 |  | 
						
							| 39 | 38 | oveq2d |  | 
						
							| 40 | 36 39 | eleqtrd |  | 
						
							| 41 | 23 | cnrest |  | 
						
							| 42 | 40 22 41 | syl2anc |  | 
						
							| 43 | 33 42 | eqeltrrd |  | 
						
							| 44 | 32 43 | sseldd |  |