Metamath Proof Explorer


Theorem xkoptsub

Description: The compact-open topology is finer than the product topology restricted to continuous functions. (Contributed by Mario Carneiro, 19-Mar-2015)

Ref Expression
Hypotheses xkoptsub.x X = R
xkoptsub.j J = 𝑡 X × S
Assertion xkoptsub R Top S Top J 𝑡 R Cn S S ^ ko R

Proof

Step Hyp Ref Expression
1 xkoptsub.x X = R
2 xkoptsub.j J = 𝑡 X × S
3 1 topopn R Top X R
4 3 adantr R Top S Top X R
5 fconstg S Top X × S : X S
6 5 adantl R Top S Top X × S : X S
7 6 ffnd R Top S Top X × S Fn X
8 eqid x | g g Fn X y X g y X × S y z Fin y X z g y = X × S y x = y X g y = x | g g Fn X y X g y X × S y z Fin y X z g y = X × S y x = y X g y
9 8 ptval X R X × S Fn X 𝑡 X × S = topGen x | g g Fn X y X g y X × S y z Fin y X z g y = X × S y x = y X g y
10 4 7 9 syl2anc R Top S Top 𝑡 X × S = topGen x | g g Fn X y X g y X × S y z Fin y X z g y = X × S y x = y X g y
11 simpr R Top S Top S Top
12 11 snssd R Top S Top S Top
13 6 12 fssd R Top S Top X × S : X Top
14 eqid n X X × S n = n X X × S n
15 8 14 ptbasfi X R X × S : X Top x | g g Fn X y X g y X × S y z Fin y X z g y = X × S y x = y X g y = fi n X X × S n ran k X , u X × S k w n X X × S n w k -1 u
16 4 13 15 syl2anc R Top S Top x | g g Fn X y X g y X × S y z Fin y X z g y = X × S y x = y X g y = fi n X X × S n ran k X , u X × S k w n X X × S n w k -1 u
17 fvconst2g S Top n X X × S n = S
18 17 adantll R Top S Top n X X × S n = S
19 18 unieqd R Top S Top n X X × S n = S
20 19 ixpeq2dva R Top S Top n X X × S n = n X S
21 eqid S = S
22 21 topopn S Top S S
23 ixpconstg X R S S n X S = S X
24 3 22 23 syl2an R Top S Top n X S = S X
25 20 24 eqtrd R Top S Top n X X × S n = S X
26 25 sneqd R Top S Top n X X × S n = S X
27 eqid X = X
28 fvconst2g S Top k X X × S k = S
29 28 adantll R Top S Top k X X × S k = S
30 25 adantr R Top S Top k X n X X × S n = S X
31 30 mpteq1d R Top S Top k X w n X X × S n w k = w S X w k
32 31 cnveqd R Top S Top k X w n X X × S n w k -1 = w S X w k -1
33 32 imaeq1d R Top S Top k X w n X X × S n w k -1 u = w S X w k -1 u
34 33 ralrimivw R Top S Top k X u X × S k w n X X × S n w k -1 u = w S X w k -1 u
35 29 34 jca R Top S Top k X X × S k = S u X × S k w n X X × S n w k -1 u = w S X w k -1 u
36 35 ralrimiva R Top S Top k X X × S k = S u X × S k w n X X × S n w k -1 u = w S X w k -1 u
37 mpoeq123 X = X k X X × S k = S u X × S k w n X X × S n w k -1 u = w S X w k -1 u k X , u X × S k w n X X × S n w k -1 u = k X , u S w S X w k -1 u
38 27 36 37 sylancr R Top S Top k X , u X × S k w n X X × S n w k -1 u = k X , u S w S X w k -1 u
39 38 rneqd R Top S Top ran k X , u X × S k w n X X × S n w k -1 u = ran k X , u S w S X w k -1 u
40 26 39 uneq12d R Top S Top n X X × S n ran k X , u X × S k w n X X × S n w k -1 u = S X ran k X , u S w S X w k -1 u
41 40 fveq2d R Top S Top fi n X X × S n ran k X , u X × S k w n X X × S n w k -1 u = fi S X ran k X , u S w S X w k -1 u
42 16 41 eqtrd R Top S Top x | g g Fn X y X g y X × S y z Fin y X z g y = X × S y x = y X g y = fi S X ran k X , u S w S X w k -1 u
43 42 fveq2d R Top S Top topGen x | g g Fn X y X g y X × S y z Fin y X z g y = X × S y x = y X g y = topGen fi S X ran k X , u S w S X w k -1 u
44 10 43 eqtrd R Top S Top 𝑡 X × S = topGen fi S X ran k X , u S w S X w k -1 u
45 2 44 eqtrid R Top S Top J = topGen fi S X ran k X , u S w S X w k -1 u
46 45 oveq1d R Top S Top J 𝑡 R Cn S = topGen fi S X ran k X , u S w S X w k -1 u 𝑡 R Cn S
47 firest fi S X ran k X , u S w S X w k -1 u 𝑡 R Cn S = fi S X ran k X , u S w S X w k -1 u 𝑡 R Cn S
48 47 fveq2i topGen fi S X ran k X , u S w S X w k -1 u 𝑡 R Cn S = topGen fi S X ran k X , u S w S X w k -1 u 𝑡 R Cn S
49 fvex fi S X ran k X , u S w S X w k -1 u V
50 ovex R Cn S V
51 tgrest fi S X ran k X , u S w S X w k -1 u V R Cn S V topGen fi S X ran k X , u S w S X w k -1 u 𝑡 R Cn S = topGen fi S X ran k X , u S w S X w k -1 u 𝑡 R Cn S
52 49 50 51 mp2an topGen fi S X ran k X , u S w S X w k -1 u 𝑡 R Cn S = topGen fi S X ran k X , u S w S X w k -1 u 𝑡 R Cn S
53 48 52 eqtri topGen fi S X ran k X , u S w S X w k -1 u 𝑡 R Cn S = topGen fi S X ran k X , u S w S X w k -1 u 𝑡 R Cn S
54 46 53 eqtr4di R Top S Top J 𝑡 R Cn S = topGen fi S X ran k X , u S w S X w k -1 u 𝑡 R Cn S
55 xkotop R Top S Top S ^ ko R Top
56 snex S X V
57 mpoexga X R S Top k X , u S w S X w k -1 u V
58 3 57 sylan R Top S Top k X , u S w S X w k -1 u V
59 rnexg k X , u S w S X w k -1 u V ran k X , u S w S X w k -1 u V
60 58 59 syl R Top S Top ran k X , u S w S X w k -1 u V
61 unexg S X V ran k X , u S w S X w k -1 u V S X ran k X , u S w S X w k -1 u V
62 56 60 61 sylancr R Top S Top S X ran k X , u S w S X w k -1 u V
63 restval S X ran k X , u S w S X w k -1 u V R Cn S V S X ran k X , u S w S X w k -1 u 𝑡 R Cn S = ran x S X ran k X , u S w S X w k -1 u x R Cn S
64 62 50 63 sylancl R Top S Top S X ran k X , u S w S X w k -1 u 𝑡 R Cn S = ran x S X ran k X , u S w S X w k -1 u x R Cn S
65 elun x S X ran k X , u S w S X w k -1 u x S X x ran k X , u S w S X w k -1 u
66 1 21 cnf x R Cn S x : X S
67 elmapg S S X R x S X x : X S
68 22 3 67 syl2anr R Top S Top x S X x : X S
69 66 68 syl5ibr R Top S Top x R Cn S x S X
70 69 ssrdv R Top S Top R Cn S S X
71 70 adantr R Top S Top x S X R Cn S S X
72 elsni x S X x = S X
73 72 adantl R Top S Top x S X x = S X
74 71 73 sseqtrrd R Top S Top x S X R Cn S x
75 sseqin2 R Cn S x x R Cn S = R Cn S
76 74 75 sylib R Top S Top x S X x R Cn S = R Cn S
77 eqid S ^ ko R = S ^ ko R
78 77 xkouni R Top S Top R Cn S = S ^ ko R
79 eqid S ^ ko R = S ^ ko R
80 79 topopn S ^ ko R Top S ^ ko R S ^ ko R
81 55 80 syl R Top S Top S ^ ko R S ^ ko R
82 78 81 eqeltrd R Top S Top R Cn S S ^ ko R
83 82 adantr R Top S Top x S X R Cn S S ^ ko R
84 76 83 eqeltrd R Top S Top x S X x R Cn S S ^ ko R
85 eqid k X , u S w S X w k -1 u = k X , u S w S X w k -1 u
86 85 rnmpo ran k X , u S w S X w k -1 u = x | k X u S x = w S X w k -1 u
87 86 abeq2i x ran k X , u S w S X w k -1 u k X u S x = w S X w k -1 u
88 cnvresima w S X w k R Cn S -1 u = w S X w k -1 u R Cn S
89 70 adantr R Top S Top k X u S R Cn S S X
90 89 resmptd R Top S Top k X u S w S X w k R Cn S = w R Cn S w k
91 90 cnveqd R Top S Top k X u S w S X w k R Cn S -1 = w R Cn S w k -1
92 91 imaeq1d R Top S Top k X u S w S X w k R Cn S -1 u = w R Cn S w k -1 u
93 88 92 eqtr3id R Top S Top k X u S w S X w k -1 u R Cn S = w R Cn S w k -1 u
94 fvex w k V
95 94 rgenw w R Cn S w k V
96 eqid w R Cn S w k = w R Cn S w k
97 96 fnmpt w R Cn S w k V w R Cn S w k Fn R Cn S
98 95 97 mp1i R Top S Top k X u S w R Cn S w k Fn R Cn S
99 elpreima w R Cn S w k Fn R Cn S f w R Cn S w k -1 u f R Cn S w R Cn S w k f u
100 98 99 syl R Top S Top k X u S f w R Cn S w k -1 u f R Cn S w R Cn S w k f u
101 fveq1 w = f w k = f k
102 fvex f k V
103 101 96 102 fvmpt f R Cn S w R Cn S w k f = f k
104 103 adantl R Top S Top k X u S f R Cn S w R Cn S w k f = f k
105 104 eleq1d R Top S Top k X u S f R Cn S w R Cn S w k f u f k u
106 102 snss f k u f k u
107 89 sselda R Top S Top k X u S f R Cn S f S X
108 elmapi f S X f : X S
109 ffn f : X S f Fn X
110 107 108 109 3syl R Top S Top k X u S f R Cn S f Fn X
111 simplrl R Top S Top k X u S f R Cn S k X
112 fnsnfv f Fn X k X f k = f k
113 110 111 112 syl2anc R Top S Top k X u S f R Cn S f k = f k
114 113 sseq1d R Top S Top k X u S f R Cn S f k u f k u
115 106 114 syl5bb R Top S Top k X u S f R Cn S f k u f k u
116 105 115 bitrd R Top S Top k X u S f R Cn S w R Cn S w k f u f k u
117 116 pm5.32da R Top S Top k X u S f R Cn S w R Cn S w k f u f R Cn S f k u
118 100 117 bitrd R Top S Top k X u S f w R Cn S w k -1 u f R Cn S f k u
119 118 abbi2dv R Top S Top k X u S w R Cn S w k -1 u = f | f R Cn S f k u
120 df-rab f R Cn S | f k u = f | f R Cn S f k u
121 119 120 eqtr4di R Top S Top k X u S w R Cn S w k -1 u = f R Cn S | f k u
122 93 121 eqtrd R Top S Top k X u S w S X w k -1 u R Cn S = f R Cn S | f k u
123 simpll R Top S Top k X u S R Top
124 11 adantr R Top S Top k X u S S Top
125 simprl R Top S Top k X u S k X
126 125 snssd R Top S Top k X u S k X
127 1 toptopon R Top R TopOn X
128 123 127 sylib R Top S Top k X u S R TopOn X
129 restsn2 R TopOn X k X R 𝑡 k = 𝒫 k
130 128 125 129 syl2anc R Top S Top k X u S R 𝑡 k = 𝒫 k
131 snfi k Fin
132 discmp k Fin 𝒫 k Comp
133 131 132 mpbi 𝒫 k Comp
134 130 133 eqeltrdi R Top S Top k X u S R 𝑡 k Comp
135 simprr R Top S Top k X u S u S
136 1 123 124 126 134 135 xkoopn R Top S Top k X u S f R Cn S | f k u S ^ ko R
137 122 136 eqeltrd R Top S Top k X u S w S X w k -1 u R Cn S S ^ ko R
138 ineq1 x = w S X w k -1 u x R Cn S = w S X w k -1 u R Cn S
139 138 eleq1d x = w S X w k -1 u x R Cn S S ^ ko R w S X w k -1 u R Cn S S ^ ko R
140 137 139 syl5ibrcom R Top S Top k X u S x = w S X w k -1 u x R Cn S S ^ ko R
141 140 rexlimdvva R Top S Top k X u S x = w S X w k -1 u x R Cn S S ^ ko R
142 141 imp R Top S Top k X u S x = w S X w k -1 u x R Cn S S ^ ko R
143 87 142 sylan2b R Top S Top x ran k X , u S w S X w k -1 u x R Cn S S ^ ko R
144 84 143 jaodan R Top S Top x S X x ran k X , u S w S X w k -1 u x R Cn S S ^ ko R
145 65 144 sylan2b R Top S Top x S X ran k X , u S w S X w k -1 u x R Cn S S ^ ko R
146 145 fmpttd R Top S Top x S X ran k X , u S w S X w k -1 u x R Cn S : S X ran k X , u S w S X w k -1 u S ^ ko R
147 146 frnd R Top S Top ran x S X ran k X , u S w S X w k -1 u x R Cn S S ^ ko R
148 64 147 eqsstrd R Top S Top S X ran k X , u S w S X w k -1 u 𝑡 R Cn S S ^ ko R
149 tgfiss S ^ ko R Top S X ran k X , u S w S X w k -1 u 𝑡 R Cn S S ^ ko R topGen fi S X ran k X , u S w S X w k -1 u 𝑡 R Cn S S ^ ko R
150 55 148 149 syl2anc R Top S Top topGen fi S X ran k X , u S w S X w k -1 u 𝑡 R Cn S S ^ ko R
151 54 150 eqsstrd R Top S Top J 𝑡 R Cn S S ^ ko R