Metamath Proof Explorer


Theorem xkoptsub

Description: The compact-open topology is finer than the product topology restricted to continuous functions. (Contributed by Mario Carneiro, 19-Mar-2015)

Ref Expression
Hypotheses xkoptsub.x X=R
xkoptsub.j J=𝑡X×S
Assertion xkoptsub RTopSTopJ𝑡RCnSS^koR

Proof

Step Hyp Ref Expression
1 xkoptsub.x X=R
2 xkoptsub.j J=𝑡X×S
3 1 topopn RTopXR
4 3 adantr RTopSTopXR
5 fconstg STopX×S:XS
6 5 adantl RTopSTopX×S:XS
7 6 ffnd RTopSTopX×SFnX
8 eqid x|ggFnXyXgyX×SyzFinyXzgy=X×Syx=yXgy=x|ggFnXyXgyX×SyzFinyXzgy=X×Syx=yXgy
9 8 ptval XRX×SFnX𝑡X×S=topGenx|ggFnXyXgyX×SyzFinyXzgy=X×Syx=yXgy
10 4 7 9 syl2anc RTopSTop𝑡X×S=topGenx|ggFnXyXgyX×SyzFinyXzgy=X×Syx=yXgy
11 simpr RTopSTopSTop
12 11 snssd RTopSTopSTop
13 6 12 fssd RTopSTopX×S:XTop
14 eqid nXX×Sn=nXX×Sn
15 8 14 ptbasfi XRX×S:XTopx|ggFnXyXgyX×SyzFinyXzgy=X×Syx=yXgy=finXX×SnrankX,uX×SkwnXX×Snwk-1u
16 4 13 15 syl2anc RTopSTopx|ggFnXyXgyX×SyzFinyXzgy=X×Syx=yXgy=finXX×SnrankX,uX×SkwnXX×Snwk-1u
17 fvconst2g STopnXX×Sn=S
18 17 adantll RTopSTopnXX×Sn=S
19 18 unieqd RTopSTopnXX×Sn=S
20 19 ixpeq2dva RTopSTopnXX×Sn=nXS
21 eqid S=S
22 21 topopn STopSS
23 ixpconstg XRSSnXS=SX
24 3 22 23 syl2an RTopSTopnXS=SX
25 20 24 eqtrd RTopSTopnXX×Sn=SX
26 25 sneqd RTopSTopnXX×Sn=SX
27 eqid X=X
28 fvconst2g STopkXX×Sk=S
29 28 adantll RTopSTopkXX×Sk=S
30 25 adantr RTopSTopkXnXX×Sn=SX
31 30 mpteq1d RTopSTopkXwnXX×Snwk=wSXwk
32 31 cnveqd RTopSTopkXwnXX×Snwk-1=wSXwk-1
33 32 imaeq1d RTopSTopkXwnXX×Snwk-1u=wSXwk-1u
34 33 ralrimivw RTopSTopkXuX×SkwnXX×Snwk-1u=wSXwk-1u
35 29 34 jca RTopSTopkXX×Sk=SuX×SkwnXX×Snwk-1u=wSXwk-1u
36 35 ralrimiva RTopSTopkXX×Sk=SuX×SkwnXX×Snwk-1u=wSXwk-1u
37 mpoeq123 X=XkXX×Sk=SuX×SkwnXX×Snwk-1u=wSXwk-1ukX,uX×SkwnXX×Snwk-1u=kX,uSwSXwk-1u
38 27 36 37 sylancr RTopSTopkX,uX×SkwnXX×Snwk-1u=kX,uSwSXwk-1u
39 38 rneqd RTopSToprankX,uX×SkwnXX×Snwk-1u=rankX,uSwSXwk-1u
40 26 39 uneq12d RTopSTopnXX×SnrankX,uX×SkwnXX×Snwk-1u=SXrankX,uSwSXwk-1u
41 40 fveq2d RTopSTopfinXX×SnrankX,uX×SkwnXX×Snwk-1u=fiSXrankX,uSwSXwk-1u
42 16 41 eqtrd RTopSTopx|ggFnXyXgyX×SyzFinyXzgy=X×Syx=yXgy=fiSXrankX,uSwSXwk-1u
43 42 fveq2d RTopSToptopGenx|ggFnXyXgyX×SyzFinyXzgy=X×Syx=yXgy=topGenfiSXrankX,uSwSXwk-1u
44 10 43 eqtrd RTopSTop𝑡X×S=topGenfiSXrankX,uSwSXwk-1u
45 2 44 eqtrid RTopSTopJ=topGenfiSXrankX,uSwSXwk-1u
46 45 oveq1d RTopSTopJ𝑡RCnS=topGenfiSXrankX,uSwSXwk-1u𝑡RCnS
47 firest fiSXrankX,uSwSXwk-1u𝑡RCnS=fiSXrankX,uSwSXwk-1u𝑡RCnS
48 47 fveq2i topGenfiSXrankX,uSwSXwk-1u𝑡RCnS=topGenfiSXrankX,uSwSXwk-1u𝑡RCnS
49 fvex fiSXrankX,uSwSXwk-1uV
50 ovex RCnSV
51 tgrest fiSXrankX,uSwSXwk-1uVRCnSVtopGenfiSXrankX,uSwSXwk-1u𝑡RCnS=topGenfiSXrankX,uSwSXwk-1u𝑡RCnS
52 49 50 51 mp2an topGenfiSXrankX,uSwSXwk-1u𝑡RCnS=topGenfiSXrankX,uSwSXwk-1u𝑡RCnS
53 48 52 eqtri topGenfiSXrankX,uSwSXwk-1u𝑡RCnS=topGenfiSXrankX,uSwSXwk-1u𝑡RCnS
54 46 53 eqtr4di RTopSTopJ𝑡RCnS=topGenfiSXrankX,uSwSXwk-1u𝑡RCnS
55 xkotop RTopSTopS^koRTop
56 snex SXV
57 mpoexga XRSTopkX,uSwSXwk-1uV
58 3 57 sylan RTopSTopkX,uSwSXwk-1uV
59 rnexg kX,uSwSXwk-1uVrankX,uSwSXwk-1uV
60 58 59 syl RTopSToprankX,uSwSXwk-1uV
61 unexg SXVrankX,uSwSXwk-1uVSXrankX,uSwSXwk-1uV
62 56 60 61 sylancr RTopSTopSXrankX,uSwSXwk-1uV
63 restval SXrankX,uSwSXwk-1uVRCnSVSXrankX,uSwSXwk-1u𝑡RCnS=ranxSXrankX,uSwSXwk-1uxRCnS
64 62 50 63 sylancl RTopSTopSXrankX,uSwSXwk-1u𝑡RCnS=ranxSXrankX,uSwSXwk-1uxRCnS
65 elun xSXrankX,uSwSXwk-1uxSXxrankX,uSwSXwk-1u
66 1 21 cnf xRCnSx:XS
67 elmapg SSXRxSXx:XS
68 22 3 67 syl2anr RTopSTopxSXx:XS
69 66 68 imbitrrid RTopSTopxRCnSxSX
70 69 ssrdv RTopSTopRCnSSX
71 70 adantr RTopSTopxSXRCnSSX
72 elsni xSXx=SX
73 72 adantl RTopSTopxSXx=SX
74 71 73 sseqtrrd RTopSTopxSXRCnSx
75 sseqin2 RCnSxxRCnS=RCnS
76 74 75 sylib RTopSTopxSXxRCnS=RCnS
77 eqid S^koR=S^koR
78 77 xkouni RTopSTopRCnS=S^koR
79 eqid S^koR=S^koR
80 79 topopn S^koRTopS^koRS^koR
81 55 80 syl RTopSTopS^koRS^koR
82 78 81 eqeltrd RTopSTopRCnSS^koR
83 82 adantr RTopSTopxSXRCnSS^koR
84 76 83 eqeltrd RTopSTopxSXxRCnSS^koR
85 eqid kX,uSwSXwk-1u=kX,uSwSXwk-1u
86 85 rnmpo rankX,uSwSXwk-1u=x|kXuSx=wSXwk-1u
87 86 eqabri xrankX,uSwSXwk-1ukXuSx=wSXwk-1u
88 cnvresima wSXwkRCnS-1u=wSXwk-1uRCnS
89 70 adantr RTopSTopkXuSRCnSSX
90 89 resmptd RTopSTopkXuSwSXwkRCnS=wRCnSwk
91 90 cnveqd RTopSTopkXuSwSXwkRCnS-1=wRCnSwk-1
92 91 imaeq1d RTopSTopkXuSwSXwkRCnS-1u=wRCnSwk-1u
93 88 92 eqtr3id RTopSTopkXuSwSXwk-1uRCnS=wRCnSwk-1u
94 fvex wkV
95 94 rgenw wRCnSwkV
96 eqid wRCnSwk=wRCnSwk
97 96 fnmpt wRCnSwkVwRCnSwkFnRCnS
98 95 97 mp1i RTopSTopkXuSwRCnSwkFnRCnS
99 elpreima wRCnSwkFnRCnSfwRCnSwk-1ufRCnSwRCnSwkfu
100 98 99 syl RTopSTopkXuSfwRCnSwk-1ufRCnSwRCnSwkfu
101 fveq1 w=fwk=fk
102 fvex fkV
103 101 96 102 fvmpt fRCnSwRCnSwkf=fk
104 103 adantl RTopSTopkXuSfRCnSwRCnSwkf=fk
105 104 eleq1d RTopSTopkXuSfRCnSwRCnSwkfufku
106 102 snss fkufku
107 89 sselda RTopSTopkXuSfRCnSfSX
108 elmapi fSXf:XS
109 ffn f:XSfFnX
110 107 108 109 3syl RTopSTopkXuSfRCnSfFnX
111 simplrl RTopSTopkXuSfRCnSkX
112 fnsnfv fFnXkXfk=fk
113 110 111 112 syl2anc RTopSTopkXuSfRCnSfk=fk
114 113 sseq1d RTopSTopkXuSfRCnSfkufku
115 106 114 bitrid RTopSTopkXuSfRCnSfkufku
116 105 115 bitrd RTopSTopkXuSfRCnSwRCnSwkfufku
117 116 pm5.32da RTopSTopkXuSfRCnSwRCnSwkfufRCnSfku
118 100 117 bitrd RTopSTopkXuSfwRCnSwk-1ufRCnSfku
119 118 eqabdv RTopSTopkXuSwRCnSwk-1u=f|fRCnSfku
120 df-rab fRCnS|fku=f|fRCnSfku
121 119 120 eqtr4di RTopSTopkXuSwRCnSwk-1u=fRCnS|fku
122 93 121 eqtrd RTopSTopkXuSwSXwk-1uRCnS=fRCnS|fku
123 simpll RTopSTopkXuSRTop
124 11 adantr RTopSTopkXuSSTop
125 simprl RTopSTopkXuSkX
126 125 snssd RTopSTopkXuSkX
127 1 toptopon RTopRTopOnX
128 123 127 sylib RTopSTopkXuSRTopOnX
129 restsn2 RTopOnXkXR𝑡k=𝒫k
130 128 125 129 syl2anc RTopSTopkXuSR𝑡k=𝒫k
131 snfi kFin
132 discmp kFin𝒫kComp
133 131 132 mpbi 𝒫kComp
134 130 133 eqeltrdi RTopSTopkXuSR𝑡kComp
135 simprr RTopSTopkXuSuS
136 1 123 124 126 134 135 xkoopn RTopSTopkXuSfRCnS|fkuS^koR
137 122 136 eqeltrd RTopSTopkXuSwSXwk-1uRCnSS^koR
138 ineq1 x=wSXwk-1uxRCnS=wSXwk-1uRCnS
139 138 eleq1d x=wSXwk-1uxRCnSS^koRwSXwk-1uRCnSS^koR
140 137 139 syl5ibrcom RTopSTopkXuSx=wSXwk-1uxRCnSS^koR
141 140 rexlimdvva RTopSTopkXuSx=wSXwk-1uxRCnSS^koR
142 141 imp RTopSTopkXuSx=wSXwk-1uxRCnSS^koR
143 87 142 sylan2b RTopSTopxrankX,uSwSXwk-1uxRCnSS^koR
144 84 143 jaodan RTopSTopxSXxrankX,uSwSXwk-1uxRCnSS^koR
145 65 144 sylan2b RTopSTopxSXrankX,uSwSXwk-1uxRCnSS^koR
146 145 fmpttd RTopSTopxSXrankX,uSwSXwk-1uxRCnS:SXrankX,uSwSXwk-1uS^koR
147 146 frnd RTopSTopranxSXrankX,uSwSXwk-1uxRCnSS^koR
148 64 147 eqsstrd RTopSTopSXrankX,uSwSXwk-1u𝑡RCnSS^koR
149 tgfiss S^koRTopSXrankX,uSwSXwk-1u𝑡RCnSS^koRtopGenfiSXrankX,uSwSXwk-1u𝑡RCnSS^koR
150 55 148 149 syl2anc RTopSToptopGenfiSXrankX,uSwSXwk-1u𝑡RCnSS^koR
151 54 150 eqsstrd RTopSTopJ𝑡RCnSS^koR