Metamath Proof Explorer


Theorem yonedalem21

Description: Lemma for yoneda . (Contributed by Mario Carneiro, 28-Jan-2017)

Ref Expression
Hypotheses yoneda.y Y=YonC
yoneda.b B=BaseC
yoneda.1 1˙=IdC
yoneda.o O=oppCatC
yoneda.s S=SetCatU
yoneda.t T=SetCatV
yoneda.q Q=OFuncCatS
yoneda.h H=HomFQ
yoneda.r R=Q×cOFuncCatT
yoneda.e E=OevalFS
yoneda.z Z=Hfunc1stYtpos2ndYfuncQ2ndFO⟨,⟩FQ1stFO
yoneda.c φCCat
yoneda.w φVW
yoneda.u φranHom𝑓CU
yoneda.v φranHom𝑓QUV
yonedalem21.f φFOFuncS
yonedalem21.x φXB
Assertion yonedalem21 φF1stZX=1stYXONatSF

Proof

Step Hyp Ref Expression
1 yoneda.y Y=YonC
2 yoneda.b B=BaseC
3 yoneda.1 1˙=IdC
4 yoneda.o O=oppCatC
5 yoneda.s S=SetCatU
6 yoneda.t T=SetCatV
7 yoneda.q Q=OFuncCatS
8 yoneda.h H=HomFQ
9 yoneda.r R=Q×cOFuncCatT
10 yoneda.e E=OevalFS
11 yoneda.z Z=Hfunc1stYtpos2ndYfuncQ2ndFO⟨,⟩FQ1stFO
12 yoneda.c φCCat
13 yoneda.w φVW
14 yoneda.u φranHom𝑓CU
15 yoneda.v φranHom𝑓QUV
16 yonedalem21.f φFOFuncS
17 yonedalem21.x φXB
18 11 fveq2i 1stZ=1stHfunc1stYtpos2ndYfuncQ2ndFO⟨,⟩FQ1stFO
19 18 oveqi F1stZX=F1stHfunc1stYtpos2ndYfuncQ2ndFO⟨,⟩FQ1stFOX
20 df-ov F1stHfunc1stYtpos2ndYfuncQ2ndFO⟨,⟩FQ1stFOX=1stHfunc1stYtpos2ndYfuncQ2ndFO⟨,⟩FQ1stFOFX
21 19 20 eqtri F1stZX=1stHfunc1stYtpos2ndYfuncQ2ndFO⟨,⟩FQ1stFOFX
22 eqid Q×cO=Q×cO
23 7 fucbas OFuncS=BaseQ
24 4 2 oppcbas B=BaseO
25 22 23 24 xpcbas OFuncS×B=BaseQ×cO
26 eqid 1stYtpos2ndYfuncQ2ndFO⟨,⟩FQ1stFO=1stYtpos2ndYfuncQ2ndFO⟨,⟩FQ1stFO
27 eqid oppCatQ×cQ=oppCatQ×cQ
28 4 oppccat CCatOCat
29 12 28 syl φOCat
30 15 unssbd φUV
31 13 30 ssexd φUV
32 5 setccat UVSCat
33 31 32 syl φSCat
34 7 29 33 fuccat φQCat
35 eqid Q2ndFO=Q2ndFO
36 22 34 29 35 2ndfcl φQ2ndFOQ×cOFuncO
37 eqid oppCatQ=oppCatQ
38 relfunc RelCFuncQ
39 1 12 4 5 7 31 14 yoncl φYCFuncQ
40 1st2ndbr RelCFuncQYCFuncQ1stYCFuncQ2ndY
41 38 39 40 sylancr φ1stYCFuncQ2ndY
42 4 37 41 funcoppc φ1stYOFuncoppCatQtpos2ndY
43 df-br 1stYOFuncoppCatQtpos2ndY1stYtpos2ndYOFuncoppCatQ
44 42 43 sylib φ1stYtpos2ndYOFuncoppCatQ
45 36 44 cofucl φ1stYtpos2ndYfuncQ2ndFOQ×cOFuncoppCatQ
46 eqid Q1stFO=Q1stFO
47 22 34 29 46 1stfcl φQ1stFOQ×cOFuncQ
48 26 27 45 47 prfcl φ1stYtpos2ndYfuncQ2ndFO⟨,⟩FQ1stFOQ×cOFuncoppCatQ×cQ
49 15 unssad φranHom𝑓QV
50 8 37 6 34 13 49 hofcl φHoppCatQ×cQFuncT
51 16 17 opelxpd φFXOFuncS×B
52 25 48 50 51 cofu1 φ1stHfunc1stYtpos2ndYfuncQ2ndFO⟨,⟩FQ1stFOFX=1stH1st1stYtpos2ndYfuncQ2ndFO⟨,⟩FQ1stFOFX
53 21 52 eqtrid φF1stZX=1stH1st1stYtpos2ndYfuncQ2ndFO⟨,⟩FQ1stFOFX
54 eqid HomQ×cO=HomQ×cO
55 26 25 54 45 47 51 prf1 φ1st1stYtpos2ndYfuncQ2ndFO⟨,⟩FQ1stFOFX=1st1stYtpos2ndYfuncQ2ndFOFX1stQ1stFOFX
56 25 36 44 51 cofu1 φ1st1stYtpos2ndYfuncQ2ndFOFX=1st1stYtpos2ndY1stQ2ndFOFX
57 fvex 1stYV
58 fvex 2ndYV
59 58 tposex tpos2ndYV
60 57 59 op1st 1st1stYtpos2ndY=1stY
61 60 a1i φ1st1stYtpos2ndY=1stY
62 22 25 54 34 29 35 51 2ndf1 φ1stQ2ndFOFX=2ndFX
63 op2ndg FOFuncSXB2ndFX=X
64 16 17 63 syl2anc φ2ndFX=X
65 62 64 eqtrd φ1stQ2ndFOFX=X
66 61 65 fveq12d φ1st1stYtpos2ndY1stQ2ndFOFX=1stYX
67 56 66 eqtrd φ1st1stYtpos2ndYfuncQ2ndFOFX=1stYX
68 22 25 54 34 29 46 51 1stf1 φ1stQ1stFOFX=1stFX
69 op1stg FOFuncSXB1stFX=F
70 16 17 69 syl2anc φ1stFX=F
71 68 70 eqtrd φ1stQ1stFOFX=F
72 67 71 opeq12d φ1st1stYtpos2ndYfuncQ2ndFOFX1stQ1stFOFX=1stYXF
73 55 72 eqtrd φ1st1stYtpos2ndYfuncQ2ndFO⟨,⟩FQ1stFOFX=1stYXF
74 73 fveq2d φ1stH1st1stYtpos2ndYfuncQ2ndFO⟨,⟩FQ1stFOFX=1stH1stYXF
75 df-ov 1stYX1stHF=1stH1stYXF
76 74 75 eqtr4di φ1stH1st1stYtpos2ndYfuncQ2ndFO⟨,⟩FQ1stFOFX=1stYX1stHF
77 eqid ONatS=ONatS
78 7 77 fuchom ONatS=HomQ
79 1 2 12 17 4 5 31 14 yon1cl φ1stYXOFuncS
80 8 34 23 78 79 16 hof1 φ1stYX1stHF=1stYXONatSF
81 53 76 80 3eqtrd φF1stZX=1stYXONatSF