Metamath Proof Explorer


Theorem yonedalem21

Description: Lemma for yoneda . (Contributed by Mario Carneiro, 28-Jan-2017)

Ref Expression
Hypotheses yoneda.y Y = Yon C
yoneda.b B = Base C
yoneda.1 1 ˙ = Id C
yoneda.o O = oppCat C
yoneda.s S = SetCat U
yoneda.t T = SetCat V
yoneda.q Q = O FuncCat S
yoneda.h H = Hom F Q
yoneda.r R = Q × c O FuncCat T
yoneda.e E = O eval F S
yoneda.z Z = H func 1 st Y tpos 2 nd Y func Q 2 nd F O ⟨,⟩ F Q 1 st F O
yoneda.c φ C Cat
yoneda.w φ V W
yoneda.u φ ran Hom 𝑓 C U
yoneda.v φ ran Hom 𝑓 Q U V
yonedalem21.f φ F O Func S
yonedalem21.x φ X B
Assertion yonedalem21 φ F 1 st Z X = 1 st Y X O Nat S F

Proof

Step Hyp Ref Expression
1 yoneda.y Y = Yon C
2 yoneda.b B = Base C
3 yoneda.1 1 ˙ = Id C
4 yoneda.o O = oppCat C
5 yoneda.s S = SetCat U
6 yoneda.t T = SetCat V
7 yoneda.q Q = O FuncCat S
8 yoneda.h H = Hom F Q
9 yoneda.r R = Q × c O FuncCat T
10 yoneda.e E = O eval F S
11 yoneda.z Z = H func 1 st Y tpos 2 nd Y func Q 2 nd F O ⟨,⟩ F Q 1 st F O
12 yoneda.c φ C Cat
13 yoneda.w φ V W
14 yoneda.u φ ran Hom 𝑓 C U
15 yoneda.v φ ran Hom 𝑓 Q U V
16 yonedalem21.f φ F O Func S
17 yonedalem21.x φ X B
18 11 fveq2i 1 st Z = 1 st H func 1 st Y tpos 2 nd Y func Q 2 nd F O ⟨,⟩ F Q 1 st F O
19 18 oveqi F 1 st Z X = F 1 st H func 1 st Y tpos 2 nd Y func Q 2 nd F O ⟨,⟩ F Q 1 st F O X
20 df-ov F 1 st H func 1 st Y tpos 2 nd Y func Q 2 nd F O ⟨,⟩ F Q 1 st F O X = 1 st H func 1 st Y tpos 2 nd Y func Q 2 nd F O ⟨,⟩ F Q 1 st F O F X
21 19 20 eqtri F 1 st Z X = 1 st H func 1 st Y tpos 2 nd Y func Q 2 nd F O ⟨,⟩ F Q 1 st F O F X
22 eqid Q × c O = Q × c O
23 7 fucbas O Func S = Base Q
24 4 2 oppcbas B = Base O
25 22 23 24 xpcbas O Func S × B = Base Q × c O
26 eqid 1 st Y tpos 2 nd Y func Q 2 nd F O ⟨,⟩ F Q 1 st F O = 1 st Y tpos 2 nd Y func Q 2 nd F O ⟨,⟩ F Q 1 st F O
27 eqid oppCat Q × c Q = oppCat Q × c Q
28 4 oppccat C Cat O Cat
29 12 28 syl φ O Cat
30 15 unssbd φ U V
31 13 30 ssexd φ U V
32 5 setccat U V S Cat
33 31 32 syl φ S Cat
34 7 29 33 fuccat φ Q Cat
35 eqid Q 2 nd F O = Q 2 nd F O
36 22 34 29 35 2ndfcl φ Q 2 nd F O Q × c O Func O
37 eqid oppCat Q = oppCat Q
38 relfunc Rel C Func Q
39 1 12 4 5 7 31 14 yoncl φ Y C Func Q
40 1st2ndbr Rel C Func Q Y C Func Q 1 st Y C Func Q 2 nd Y
41 38 39 40 sylancr φ 1 st Y C Func Q 2 nd Y
42 4 37 41 funcoppc φ 1 st Y O Func oppCat Q tpos 2 nd Y
43 df-br 1 st Y O Func oppCat Q tpos 2 nd Y 1 st Y tpos 2 nd Y O Func oppCat Q
44 42 43 sylib φ 1 st Y tpos 2 nd Y O Func oppCat Q
45 36 44 cofucl φ 1 st Y tpos 2 nd Y func Q 2 nd F O Q × c O Func oppCat Q
46 eqid Q 1 st F O = Q 1 st F O
47 22 34 29 46 1stfcl φ Q 1 st F O Q × c O Func Q
48 26 27 45 47 prfcl φ 1 st Y tpos 2 nd Y func Q 2 nd F O ⟨,⟩ F Q 1 st F O Q × c O Func oppCat Q × c Q
49 15 unssad φ ran Hom 𝑓 Q V
50 8 37 6 34 13 49 hofcl φ H oppCat Q × c Q Func T
51 16 17 opelxpd φ F X O Func S × B
52 25 48 50 51 cofu1 φ 1 st H func 1 st Y tpos 2 nd Y func Q 2 nd F O ⟨,⟩ F Q 1 st F O F X = 1 st H 1 st 1 st Y tpos 2 nd Y func Q 2 nd F O ⟨,⟩ F Q 1 st F O F X
53 21 52 syl5eq φ F 1 st Z X = 1 st H 1 st 1 st Y tpos 2 nd Y func Q 2 nd F O ⟨,⟩ F Q 1 st F O F X
54 eqid Hom Q × c O = Hom Q × c O
55 26 25 54 45 47 51 prf1 φ 1 st 1 st Y tpos 2 nd Y func Q 2 nd F O ⟨,⟩ F Q 1 st F O F X = 1 st 1 st Y tpos 2 nd Y func Q 2 nd F O F X 1 st Q 1 st F O F X
56 25 36 44 51 cofu1 φ 1 st 1 st Y tpos 2 nd Y func Q 2 nd F O F X = 1 st 1 st Y tpos 2 nd Y 1 st Q 2 nd F O F X
57 fvex 1 st Y V
58 fvex 2 nd Y V
59 58 tposex tpos 2 nd Y V
60 57 59 op1st 1 st 1 st Y tpos 2 nd Y = 1 st Y
61 60 a1i φ 1 st 1 st Y tpos 2 nd Y = 1 st Y
62 22 25 54 34 29 35 51 2ndf1 φ 1 st Q 2 nd F O F X = 2 nd F X
63 op2ndg F O Func S X B 2 nd F X = X
64 16 17 63 syl2anc φ 2 nd F X = X
65 62 64 eqtrd φ 1 st Q 2 nd F O F X = X
66 61 65 fveq12d φ 1 st 1 st Y tpos 2 nd Y 1 st Q 2 nd F O F X = 1 st Y X
67 56 66 eqtrd φ 1 st 1 st Y tpos 2 nd Y func Q 2 nd F O F X = 1 st Y X
68 22 25 54 34 29 46 51 1stf1 φ 1 st Q 1 st F O F X = 1 st F X
69 op1stg F O Func S X B 1 st F X = F
70 16 17 69 syl2anc φ 1 st F X = F
71 68 70 eqtrd φ 1 st Q 1 st F O F X = F
72 67 71 opeq12d φ 1 st 1 st Y tpos 2 nd Y func Q 2 nd F O F X 1 st Q 1 st F O F X = 1 st Y X F
73 55 72 eqtrd φ 1 st 1 st Y tpos 2 nd Y func Q 2 nd F O ⟨,⟩ F Q 1 st F O F X = 1 st Y X F
74 73 fveq2d φ 1 st H 1 st 1 st Y tpos 2 nd Y func Q 2 nd F O ⟨,⟩ F Q 1 st F O F X = 1 st H 1 st Y X F
75 df-ov 1 st Y X 1 st H F = 1 st H 1 st Y X F
76 74 75 syl6eqr φ 1 st H 1 st 1 st Y tpos 2 nd Y func Q 2 nd F O ⟨,⟩ F Q 1 st F O F X = 1 st Y X 1 st H F
77 eqid O Nat S = O Nat S
78 7 77 fuchom O Nat S = Hom Q
79 1 2 12 17 4 5 31 14 yon1cl φ 1 st Y X O Func S
80 8 34 23 78 79 16 hof1 φ 1 st Y X 1 st H F = 1 st Y X O Nat S F
81 53 76 80 3eqtrd φ F 1 st Z X = 1 st Y X O Nat S F