| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zarclsx.1 |
|
| 2 |
|
crngring |
|
| 3 |
2
|
ad4antr |
|
| 4 |
|
elpwi |
|
| 5 |
4
|
adantl |
|
| 6 |
5
|
adantr |
|
| 7 |
6
|
sselda |
|
| 8 |
|
eqid |
|
| 9 |
|
eqid |
|
| 10 |
8 9
|
lidlss |
|
| 11 |
7 10
|
syl |
|
| 12 |
11
|
ralrimiva |
|
| 13 |
|
unissb |
|
| 14 |
12 13
|
sylibr |
|
| 15 |
|
eqid |
|
| 16 |
15 8 9
|
rspcl |
|
| 17 |
3 14 16
|
syl2anc |
|
| 18 |
|
sseq1 |
|
| 19 |
18
|
rabbidv |
|
| 20 |
19
|
eqeq2d |
|
| 21 |
20
|
adantl |
|
| 22 |
|
simpr |
|
| 23 |
22
|
inteqd |
|
| 24 |
1
|
funmpt2 |
|
| 25 |
24
|
a1i |
|
| 26 |
|
fvex |
|
| 27 |
26
|
rabex |
|
| 28 |
27 1
|
dmmpti |
|
| 29 |
6 28
|
sseqtrrdi |
|
| 30 |
|
intimafv |
|
| 31 |
25 29 30
|
syl2anc |
|
| 32 |
23 31
|
eqtrd |
|
| 33 |
|
simplr |
|
| 34 |
|
simpr |
|
| 35 |
34
|
imaeq2d |
|
| 36 |
|
ima0 |
|
| 37 |
35 36
|
eqtrdi |
|
| 38 |
33 37
|
eqtrd |
|
| 39 |
|
simp-4r |
|
| 40 |
39
|
neneqd |
|
| 41 |
38 40
|
pm2.65da |
|
| 42 |
41
|
neqned |
|
| 43 |
1 15
|
zarclsiin |
|
| 44 |
3 6 42 43
|
syl3anc |
|
| 45 |
1
|
a1i |
|
| 46 |
19
|
adantl |
|
| 47 |
26
|
rabex |
|
| 48 |
47
|
a1i |
|
| 49 |
45 46 17 48
|
fvmptd |
|
| 50 |
32 44 49
|
3eqtrd |
|
| 51 |
17 21 50
|
rspcedvd |
|
| 52 |
|
intex |
|
| 53 |
52
|
biimpi |
|
| 54 |
53
|
3ad2ant3 |
|
| 55 |
1
|
elrnmpt |
|
| 56 |
54 55
|
syl |
|
| 57 |
56
|
ad5ant123 |
|
| 58 |
51 57
|
mpbird |
|
| 59 |
|
fvexd |
|
| 60 |
24
|
a1i |
|
| 61 |
|
simplr |
|
| 62 |
27 1
|
fnmpti |
|
| 63 |
|
fnima |
|
| 64 |
62 63
|
ax-mp |
|
| 65 |
61 64
|
sseqtrrdi |
|
| 66 |
|
ssimaexg |
|
| 67 |
59 60 65 66
|
syl3anc |
|
| 68 |
|
vex |
|
| 69 |
68
|
a1i |
|
| 70 |
|
simpr |
|
| 71 |
69 70
|
elpwd |
|
| 72 |
71
|
ex |
|
| 73 |
72
|
anim1d |
|
| 74 |
73
|
eximdv |
|
| 75 |
67 74
|
mpd |
|
| 76 |
|
df-rex |
|
| 77 |
75 76
|
sylibr |
|
| 78 |
58 77
|
r19.29a |
|
| 79 |
78
|
3impa |
|