Metamath Proof Explorer


Theorem zrhpsgnodpm

Description: The sign of an odd permutation embedded into a ring is the additive inverse of the multiplicative neutral element of the ring. (Contributed by SO, 9-Jul-2018)

Ref Expression
Hypotheses zrhpsgnevpm.y Y = ℤRHom R
zrhpsgnevpm.s S = pmSgn N
zrhpsgnevpm.o 1 ˙ = 1 R
zrhpsgnodpm.p P = Base SymGrp N
zrhpsgnodpm.i I = inv g R
Assertion zrhpsgnodpm R Ring N Fin F P pmEven N Y S F = I 1 ˙

Proof

Step Hyp Ref Expression
1 zrhpsgnevpm.y Y = ℤRHom R
2 zrhpsgnevpm.s S = pmSgn N
3 zrhpsgnevpm.o 1 ˙ = 1 R
4 zrhpsgnodpm.p P = Base SymGrp N
5 zrhpsgnodpm.i I = inv g R
6 eqid SymGrp N = SymGrp N
7 eqid mulGrp fld 𝑠 1 1 = mulGrp fld 𝑠 1 1
8 6 2 7 psgnghm2 N Fin S SymGrp N GrpHom mulGrp fld 𝑠 1 1
9 eqid Base mulGrp fld 𝑠 1 1 = Base mulGrp fld 𝑠 1 1
10 4 9 ghmf S SymGrp N GrpHom mulGrp fld 𝑠 1 1 S : P Base mulGrp fld 𝑠 1 1
11 8 10 syl N Fin S : P Base mulGrp fld 𝑠 1 1
12 11 3ad2ant2 R Ring N Fin F P pmEven N S : P Base mulGrp fld 𝑠 1 1
13 eldifi F P pmEven N F P
14 13 3ad2ant3 R Ring N Fin F P pmEven N F P
15 fvco3 S : P Base mulGrp fld 𝑠 1 1 F P Y S F = Y S F
16 12 14 15 syl2anc R Ring N Fin F P pmEven N Y S F = Y S F
17 6 4 2 psgnodpm N Fin F P pmEven N S F = 1
18 17 3adant1 R Ring N Fin F P pmEven N S F = 1
19 18 fveq2d R Ring N Fin F P pmEven N Y S F = Y 1
20 1 zrhrhm R Ring Y ring RingHom R
21 rhmghm Y ring RingHom R Y ring GrpHom R
22 20 21 syl R Ring Y ring GrpHom R
23 1z 1
24 23 a1i R Ring 1
25 zringbas = Base ring
26 eqid inv g ring = inv g ring
27 25 26 5 ghminv Y ring GrpHom R 1 Y inv g ring 1 = I Y 1
28 22 24 27 syl2anc R Ring Y inv g ring 1 = I Y 1
29 zringinvg 1 1 = inv g ring 1
30 23 29 ax-mp 1 = inv g ring 1
31 30 eqcomi inv g ring 1 = 1
32 31 fveq2i Y inv g ring 1 = Y 1
33 32 a1i R Ring Y inv g ring 1 = Y 1
34 1 3 zrh1 R Ring Y 1 = 1 ˙
35 34 fveq2d R Ring I Y 1 = I 1 ˙
36 28 33 35 3eqtr3d R Ring Y 1 = I 1 ˙
37 36 3ad2ant1 R Ring N Fin F P pmEven N Y 1 = I 1 ˙
38 16 19 37 3eqtrd R Ring N Fin F P pmEven N Y S F = I 1 ˙