Metamath Proof Explorer


Theorem zrtermorngc

Description: The zero ring is a terminal object in the category of nonunital rings. (Contributed by AV, 17-Apr-2020)

Ref Expression
Hypotheses zrinitorngc.u φ U V
zrinitorngc.c C = RngCat U
zrinitorngc.z φ Z Ring NzRing
zrinitorngc.e φ Z U
Assertion zrtermorngc φ Z TermO C

Proof

Step Hyp Ref Expression
1 zrinitorngc.u φ U V
2 zrinitorngc.c C = RngCat U
3 zrinitorngc.z φ Z Ring NzRing
4 zrinitorngc.e φ Z U
5 eqid Base C = Base C
6 2 5 1 rngcbas φ Base C = U Rng
7 6 eleq2d φ r Base C r U Rng
8 elin r U Rng r U r Rng
9 8 simprbi r U Rng r Rng
10 7 9 syl6bi φ r Base C r Rng
11 10 imp φ r Base C r Rng
12 3 adantr φ r Base C Z Ring NzRing
13 eqid Base r = Base r
14 eqid 0 Z = 0 Z
15 eqid x Base r 0 Z = x Base r 0 Z
16 13 14 15 c0rnghm r Rng Z Ring NzRing x Base r 0 Z r RngHomo Z
17 11 12 16 syl2anc φ r Base C x Base r 0 Z r RngHomo Z
18 simpr φ r Base C x Base r 0 Z r RngHomo Z x Base r 0 Z r RngHomo Z
19 1 adantr φ r Base C U V
20 eqid Hom C = Hom C
21 simpr φ r Base C r Base C
22 eldifi Z Ring NzRing Z Ring
23 ringrng Z Ring Z Rng
24 3 22 23 3syl φ Z Rng
25 4 24 elind φ Z U Rng
26 25 6 eleqtrrd φ Z Base C
27 26 adantr φ r Base C Z Base C
28 2 5 19 20 21 27 rngchom φ r Base C r Hom C Z = r RngHomo Z
29 28 eqcomd φ r Base C r RngHomo Z = r Hom C Z
30 29 eleq2d φ r Base C x Base r 0 Z r RngHomo Z x Base r 0 Z r Hom C Z
31 30 biimpa φ r Base C x Base r 0 Z r RngHomo Z x Base r 0 Z r Hom C Z
32 28 eleq2d φ r Base C h r Hom C Z h r RngHomo Z
33 eqid Base Z = Base Z
34 13 33 rnghmf h r RngHomo Z h : Base r Base Z
35 32 34 syl6bi φ r Base C h r Hom C Z h : Base r Base Z
36 35 adantr φ r Base C x Base r 0 Z r RngHomo Z h r Hom C Z h : Base r Base Z
37 ffn h : Base r Base Z h Fn Base r
38 37 adantl φ r Base C x Base r 0 Z r RngHomo Z h : Base r Base Z h Fn Base r
39 fvex 0 Z V
40 39 15 fnmpti x Base r 0 Z Fn Base r
41 40 a1i φ r Base C x Base r 0 Z r RngHomo Z h : Base r Base Z x Base r 0 Z Fn Base r
42 33 14 0ringbas Z Ring NzRing Base Z = 0 Z
43 3 42 syl φ Base Z = 0 Z
44 43 adantr φ r Base C Base Z = 0 Z
45 44 feq3d φ r Base C h : Base r Base Z h : Base r 0 Z
46 fvconst h : Base r 0 Z a Base r h a = 0 Z
47 46 ex h : Base r 0 Z a Base r h a = 0 Z
48 45 47 syl6bi φ r Base C h : Base r Base Z a Base r h a = 0 Z
49 48 adantr φ r Base C x Base r 0 Z r RngHomo Z h : Base r Base Z a Base r h a = 0 Z
50 49 imp31 φ r Base C x Base r 0 Z r RngHomo Z h : Base r Base Z a Base r h a = 0 Z
51 eqidd a Base r x Base r 0 Z = x Base r 0 Z
52 eqidd a Base r x = a 0 Z = 0 Z
53 id a Base r a Base r
54 39 a1i a Base r 0 Z V
55 51 52 53 54 fvmptd a Base r x Base r 0 Z a = 0 Z
56 55 adantl φ r Base C x Base r 0 Z r RngHomo Z h : Base r Base Z a Base r x Base r 0 Z a = 0 Z
57 50 56 eqtr4d φ r Base C x Base r 0 Z r RngHomo Z h : Base r Base Z a Base r h a = x Base r 0 Z a
58 38 41 57 eqfnfvd φ r Base C x Base r 0 Z r RngHomo Z h : Base r Base Z h = x Base r 0 Z
59 58 ex φ r Base C x Base r 0 Z r RngHomo Z h : Base r Base Z h = x Base r 0 Z
60 36 59 syld φ r Base C x Base r 0 Z r RngHomo Z h r Hom C Z h = x Base r 0 Z
61 60 alrimiv φ r Base C x Base r 0 Z r RngHomo Z h h r Hom C Z h = x Base r 0 Z
62 18 31 61 3jca φ r Base C x Base r 0 Z r RngHomo Z x Base r 0 Z r RngHomo Z x Base r 0 Z r Hom C Z h h r Hom C Z h = x Base r 0 Z
63 17 62 mpdan φ r Base C x Base r 0 Z r RngHomo Z x Base r 0 Z r Hom C Z h h r Hom C Z h = x Base r 0 Z
64 eleq1 h = x Base r 0 Z h r Hom C Z x Base r 0 Z r Hom C Z
65 64 eqeu x Base r 0 Z r RngHomo Z x Base r 0 Z r Hom C Z h h r Hom C Z h = x Base r 0 Z ∃! h h r Hom C Z
66 63 65 syl φ r Base C ∃! h h r Hom C Z
67 66 ralrimiva φ r Base C ∃! h h r Hom C Z
68 2 rngccat U V C Cat
69 1 68 syl φ C Cat
70 5 20 69 26 istermo φ Z TermO C r Base C ∃! h h r Hom C Z
71 67 70 mpbird φ Z TermO C