Metamath Proof Explorer


Theorem zscut

Description: A cut expression for surreal integers. (Contributed by Scott Fenton, 20-Aug-2025)

Ref Expression
Assertion zscut A s A = A - s 1 s | s A + s 1 s

Proof

Step Hyp Ref Expression
1 elzn0s A s A No A 0s + s A 0s
2 n0scut A 0s A = A - s 1 s | s
3 n0sno A 0s A No
4 1sno 1 s No
5 4 a1i A 0s 1 s No
6 3 5 subscld A 0s A - s 1 s No
7 snelpwi A - s 1 s No A - s 1 s 𝒫 No
8 nulssgt A - s 1 s 𝒫 No A - s 1 s s
9 6 7 8 3syl A 0s A - s 1 s s
10 slerflex A - s 1 s No A - s 1 s s A - s 1 s
11 6 10 syl A 0s A - s 1 s s A - s 1 s
12 ovex A - s 1 s V
13 breq1 x = A - s 1 s x s y A - s 1 s s y
14 13 rexbidv x = A - s 1 s y A - s 1 s x s y y A - s 1 s A - s 1 s s y
15 12 14 ralsn x A - s 1 s y A - s 1 s x s y y A - s 1 s A - s 1 s s y
16 breq2 y = A - s 1 s A - s 1 s s y A - s 1 s s A - s 1 s
17 12 16 rexsn y A - s 1 s A - s 1 s s y A - s 1 s s A - s 1 s
18 15 17 bitri x A - s 1 s y A - s 1 s x s y A - s 1 s s A - s 1 s
19 11 18 sylibr A 0s x A - s 1 s y A - s 1 s x s y
20 ral0 x y A + s 1 s y s x
21 20 a1i A 0s x y A + s 1 s y s x
22 3 sltm1d A 0s A - s 1 s < s A
23 6 3 22 ssltsn A 0s A - s 1 s s A
24 2 sneqd A 0s A = A - s 1 s | s
25 23 24 breqtrd A 0s A - s 1 s s A - s 1 s | s
26 3 5 addscld A 0s A + s 1 s No
27 3 sltp1d A 0s A < s A + s 1 s
28 3 26 27 ssltsn A 0s A s A + s 1 s
29 24 28 eqbrtrrd A 0s A - s 1 s | s s A + s 1 s
30 9 19 21 25 29 cofcut1d A 0s A - s 1 s | s = A - s 1 s | s A + s 1 s
31 2 30 eqtrd A 0s A = A - s 1 s | s A + s 1 s
32 31 adantl A No A 0s A = A - s 1 s | s A + s 1 s
33 negsfn + s Fn No
34 simpl A No + s A 0s A No
35 4 a1i A No + s A 0s 1 s No
36 34 35 addscld A No + s A 0s A + s 1 s No
37 fnsnfv + s Fn No A + s 1 s No + s A + s 1 s = + s A + s 1 s
38 33 36 37 sylancr A No + s A 0s + s A + s 1 s = + s A + s 1 s
39 negsdi A No 1 s No + s A + s 1 s = + s A + s + s 1 s
40 34 4 39 sylancl A No + s A 0s + s A + s 1 s = + s A + s + s 1 s
41 n0sno + s A 0s + s A No
42 41 adantl A No + s A 0s + s A No
43 42 35 subsvald A No + s A 0s + s A - s 1 s = + s A + s + s 1 s
44 40 43 eqtr4d A No + s A 0s + s A + s 1 s = + s A - s 1 s
45 44 sneqd A No + s A 0s + s A + s 1 s = + s A - s 1 s
46 38 45 eqtr3d A No + s A 0s + s A + s 1 s = + s A - s 1 s
47 34 35 subscld A No + s A 0s A - s 1 s No
48 fnsnfv + s Fn No A - s 1 s No + s A - s 1 s = + s A - s 1 s
49 33 47 48 sylancr A No + s A 0s + s A - s 1 s = + s A - s 1 s
50 35 34 subsvald A No + s A 0s 1 s - s A = 1 s + s + s A
51 34 35 negsubsdi2d A No + s A 0s + s A - s 1 s = 1 s - s A
52 42 35 addscomd A No + s A 0s + s A + s 1 s = 1 s + s + s A
53 50 51 52 3eqtr4d A No + s A 0s + s A - s 1 s = + s A + s 1 s
54 53 sneqd A No + s A 0s + s A - s 1 s = + s A + s 1 s
55 49 54 eqtr3d A No + s A 0s + s A - s 1 s = + s A + s 1 s
56 46 55 oveq12d A No + s A 0s + s A + s 1 s | s + s A - s 1 s = + s A - s 1 s | s + s A + s 1 s
57 34 sltm1d A No + s A 0s A - s 1 s < s A
58 34 sltp1d A No + s A 0s A < s A + s 1 s
59 47 34 36 57 58 slttrd A No + s A 0s A - s 1 s < s A + s 1 s
60 47 36 59 ssltsn A No + s A 0s A - s 1 s s A + s 1 s
61 eqidd A No + s A 0s A - s 1 s | s A + s 1 s = A - s 1 s | s A + s 1 s
62 60 61 negsunif A No + s A 0s + s A - s 1 s | s A + s 1 s = + s A + s 1 s | s + s A - s 1 s
63 n0scut + s A 0s + s A = + s A - s 1 s | s
64 4 a1i + s A 0s 1 s No
65 41 64 subscld + s A 0s + s A - s 1 s No
66 snelpwi + s A - s 1 s No + s A - s 1 s 𝒫 No
67 nulssgt + s A - s 1 s 𝒫 No + s A - s 1 s s
68 65 66 67 3syl + s A 0s + s A - s 1 s s
69 slerflex + s A - s 1 s No + s A - s 1 s s + s A - s 1 s
70 65 69 syl + s A 0s + s A - s 1 s s + s A - s 1 s
71 ovex + s A - s 1 s V
72 breq1 x = + s A - s 1 s x s y + s A - s 1 s s y
73 72 rexbidv x = + s A - s 1 s y + s A - s 1 s x s y y + s A - s 1 s + s A - s 1 s s y
74 71 73 ralsn x + s A - s 1 s y + s A - s 1 s x s y y + s A - s 1 s + s A - s 1 s s y
75 breq2 y = + s A - s 1 s + s A - s 1 s s y + s A - s 1 s s + s A - s 1 s
76 71 75 rexsn y + s A - s 1 s + s A - s 1 s s y + s A - s 1 s s + s A - s 1 s
77 74 76 bitri x + s A - s 1 s y + s A - s 1 s x s y + s A - s 1 s s + s A - s 1 s
78 70 77 sylibr + s A 0s x + s A - s 1 s y + s A - s 1 s x s y
79 ral0 x y + s A + s 1 s y s x
80 79 a1i + s A 0s x y + s A + s 1 s y s x
81 41 sltm1d + s A 0s + s A - s 1 s < s + s A
82 65 41 81 ssltsn + s A 0s + s A - s 1 s s + s A
83 63 sneqd + s A 0s + s A = + s A - s 1 s | s
84 82 83 breqtrd + s A 0s + s A - s 1 s s + s A - s 1 s | s
85 41 64 addscld + s A 0s + s A + s 1 s No
86 41 sltp1d + s A 0s + s A < s + s A + s 1 s
87 41 85 86 ssltsn + s A 0s + s A s + s A + s 1 s
88 83 87 eqbrtrrd + s A 0s + s A - s 1 s | s s + s A + s 1 s
89 68 78 80 84 88 cofcut1d + s A 0s + s A - s 1 s | s = + s A - s 1 s | s + s A + s 1 s
90 63 89 eqtrd + s A 0s + s A = + s A - s 1 s | s + s A + s 1 s
91 90 adantl A No + s A 0s + s A = + s A - s 1 s | s + s A + s 1 s
92 56 62 91 3eqtr4rd A No + s A 0s + s A = + s A - s 1 s | s A + s 1 s
93 60 scutcld A No + s A 0s A - s 1 s | s A + s 1 s No
94 negs11 A No A - s 1 s | s A + s 1 s No + s A = + s A - s 1 s | s A + s 1 s A = A - s 1 s | s A + s 1 s
95 93 94 syldan A No + s A 0s + s A = + s A - s 1 s | s A + s 1 s A = A - s 1 s | s A + s 1 s
96 92 95 mpbid A No + s A 0s A = A - s 1 s | s A + s 1 s
97 32 96 jaodan A No A 0s + s A 0s A = A - s 1 s | s A + s 1 s
98 1 97 sylbi A s A = A - s 1 s | s A + s 1 s