| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ballotth.m | ⊢ 𝑀  ∈  ℕ | 
						
							| 2 |  | ballotth.n | ⊢ 𝑁  ∈  ℕ | 
						
							| 3 |  | ballotth.o | ⊢ 𝑂  =  { 𝑐  ∈  𝒫  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ♯ ‘ 𝑐 )  =  𝑀 } | 
						
							| 4 |  | ballotth.p | ⊢ 𝑃  =  ( 𝑥  ∈  𝒫  𝑂  ↦  ( ( ♯ ‘ 𝑥 )  /  ( ♯ ‘ 𝑂 ) ) ) | 
						
							| 5 |  | ballotth.f | ⊢ 𝐹  =  ( 𝑐  ∈  𝑂  ↦  ( 𝑖  ∈  ℤ  ↦  ( ( ♯ ‘ ( ( 1 ... 𝑖 )  ∩  𝑐 ) )  −  ( ♯ ‘ ( ( 1 ... 𝑖 )  ∖  𝑐 ) ) ) ) ) | 
						
							| 6 |  | ballotth.e | ⊢ 𝐸  =  { 𝑐  ∈  𝑂  ∣  ∀ 𝑖  ∈  ( 1 ... ( 𝑀  +  𝑁 ) ) 0  <  ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑖 ) } | 
						
							| 7 |  | ballotth.mgtn | ⊢ 𝑁  <  𝑀 | 
						
							| 8 |  | ballotth.i | ⊢ 𝐼  =  ( 𝑐  ∈  ( 𝑂  ∖  𝐸 )  ↦  inf ( { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 )  =  0 } ,  ℝ ,   <  ) ) | 
						
							| 9 |  | ballotth.s | ⊢ 𝑆  =  ( 𝑐  ∈  ( 𝑂  ∖  𝐸 )  ↦  ( 𝑖  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ↦  if ( 𝑖  ≤  ( 𝐼 ‘ 𝑐 ) ,  ( ( ( 𝐼 ‘ 𝑐 )  +  1 )  −  𝑖 ) ,  𝑖 ) ) ) | 
						
							| 10 |  | ballotth.r | ⊢ 𝑅  =  ( 𝑐  ∈  ( 𝑂  ∖  𝐸 )  ↦  ( ( 𝑆 ‘ 𝑐 )  “  𝑐 ) ) | 
						
							| 11 |  | ballotlemg | ⊢  ↑   =  ( 𝑢  ∈  Fin ,  𝑣  ∈  Fin  ↦  ( ( ♯ ‘ ( 𝑣  ∩  𝑢 ) )  −  ( ♯ ‘ ( 𝑣  ∖  𝑢 ) ) ) ) | 
						
							| 12 | 1 2 3 4 5 6 7 8 9 | ballotlemsel1i | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 )  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) | 
						
							| 13 |  | 1zzd | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  1  ∈  ℤ ) | 
						
							| 14 | 1 2 3 4 5 6 7 8 | ballotlemiex | ⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( ( 𝐼 ‘ 𝐶 )  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∧  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝐼 ‘ 𝐶 ) )  =  0 ) ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( ( 𝐼 ‘ 𝐶 )  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∧  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝐼 ‘ 𝐶 ) )  =  0 ) ) | 
						
							| 16 | 15 | simpld | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( 𝐼 ‘ 𝐶 )  ∈  ( 1 ... ( 𝑀  +  𝑁 ) ) ) | 
						
							| 17 | 16 | elfzelzd | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( 𝐼 ‘ 𝐶 )  ∈  ℤ ) | 
						
							| 18 |  | elfzuz3 | ⊢ ( ( 𝐼 ‘ 𝐶 )  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  →  ( 𝑀  +  𝑁 )  ∈  ( ℤ≥ ‘ ( 𝐼 ‘ 𝐶 ) ) ) | 
						
							| 19 |  | fzss2 | ⊢ ( ( 𝑀  +  𝑁 )  ∈  ( ℤ≥ ‘ ( 𝐼 ‘ 𝐶 ) )  →  ( 1 ... ( 𝐼 ‘ 𝐶 ) )  ⊆  ( 1 ... ( 𝑀  +  𝑁 ) ) ) | 
						
							| 20 | 16 18 19 | 3syl | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( 1 ... ( 𝐼 ‘ 𝐶 ) )  ⊆  ( 1 ... ( 𝑀  +  𝑁 ) ) ) | 
						
							| 21 |  | simpr | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) | 
						
							| 22 | 20 21 | sseldd | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  𝐽  ∈  ( 1 ... ( 𝑀  +  𝑁 ) ) ) | 
						
							| 23 | 1 2 3 4 5 6 7 8 9 | ballotlemsdom | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝑀  +  𝑁 ) ) )  →  ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 )  ∈  ( 1 ... ( 𝑀  +  𝑁 ) ) ) | 
						
							| 24 | 22 23 | syldan | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 )  ∈  ( 1 ... ( 𝑀  +  𝑁 ) ) ) | 
						
							| 25 | 24 | elfzelzd | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 )  ∈  ℤ ) | 
						
							| 26 |  | fzsubel | ⊢ ( ( ( 1  ∈  ℤ  ∧  ( 𝐼 ‘ 𝐶 )  ∈  ℤ )  ∧  ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 )  ∈  ℤ  ∧  1  ∈  ℤ ) )  →  ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 )  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) )  ↔  ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 )  −  1 )  ∈  ( ( 1  −  1 ) ... ( ( 𝐼 ‘ 𝐶 )  −  1 ) ) ) ) | 
						
							| 27 | 13 17 25 13 26 | syl22anc | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 )  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) )  ↔  ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 )  −  1 )  ∈  ( ( 1  −  1 ) ... ( ( 𝐼 ‘ 𝐶 )  −  1 ) ) ) ) | 
						
							| 28 | 12 27 | mpbid | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 )  −  1 )  ∈  ( ( 1  −  1 ) ... ( ( 𝐼 ‘ 𝐶 )  −  1 ) ) ) | 
						
							| 29 |  | 1m1e0 | ⊢ ( 1  −  1 )  =  0 | 
						
							| 30 | 29 | oveq1i | ⊢ ( ( 1  −  1 ) ... ( ( 𝐼 ‘ 𝐶 )  −  1 ) )  =  ( 0 ... ( ( 𝐼 ‘ 𝐶 )  −  1 ) ) | 
						
							| 31 | 28 30 | eleqtrdi | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 )  −  1 )  ∈  ( 0 ... ( ( 𝐼 ‘ 𝐶 )  −  1 ) ) ) | 
						
							| 32 | 14 | simpld | ⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( 𝐼 ‘ 𝐶 )  ∈  ( 1 ... ( 𝑀  +  𝑁 ) ) ) | 
						
							| 33 | 32 | elfzelzd | ⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( 𝐼 ‘ 𝐶 )  ∈  ℤ ) | 
						
							| 34 |  | 1zzd | ⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  1  ∈  ℤ ) | 
						
							| 35 | 33 34 | zsubcld | ⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( ( 𝐼 ‘ 𝐶 )  −  1 )  ∈  ℤ ) | 
						
							| 36 |  | nnaddcl | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝑀  +  𝑁 )  ∈  ℕ ) | 
						
							| 37 | 1 2 36 | mp2an | ⊢ ( 𝑀  +  𝑁 )  ∈  ℕ | 
						
							| 38 | 37 | nnzi | ⊢ ( 𝑀  +  𝑁 )  ∈  ℤ | 
						
							| 39 | 38 | a1i | ⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( 𝑀  +  𝑁 )  ∈  ℤ ) | 
						
							| 40 |  | elfzle2 | ⊢ ( ( 𝐼 ‘ 𝐶 )  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  →  ( 𝐼 ‘ 𝐶 )  ≤  ( 𝑀  +  𝑁 ) ) | 
						
							| 41 | 32 40 | syl | ⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( 𝐼 ‘ 𝐶 )  ≤  ( 𝑀  +  𝑁 ) ) | 
						
							| 42 |  | zlem1lt | ⊢ ( ( ( 𝐼 ‘ 𝐶 )  ∈  ℤ  ∧  ( 𝑀  +  𝑁 )  ∈  ℤ )  →  ( ( 𝐼 ‘ 𝐶 )  ≤  ( 𝑀  +  𝑁 )  ↔  ( ( 𝐼 ‘ 𝐶 )  −  1 )  <  ( 𝑀  +  𝑁 ) ) ) | 
						
							| 43 | 33 39 42 | syl2anc | ⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( ( 𝐼 ‘ 𝐶 )  ≤  ( 𝑀  +  𝑁 )  ↔  ( ( 𝐼 ‘ 𝐶 )  −  1 )  <  ( 𝑀  +  𝑁 ) ) ) | 
						
							| 44 | 35 | zred | ⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( ( 𝐼 ‘ 𝐶 )  −  1 )  ∈  ℝ ) | 
						
							| 45 | 39 | zred | ⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( 𝑀  +  𝑁 )  ∈  ℝ ) | 
						
							| 46 |  | ltle | ⊢ ( ( ( ( 𝐼 ‘ 𝐶 )  −  1 )  ∈  ℝ  ∧  ( 𝑀  +  𝑁 )  ∈  ℝ )  →  ( ( ( 𝐼 ‘ 𝐶 )  −  1 )  <  ( 𝑀  +  𝑁 )  →  ( ( 𝐼 ‘ 𝐶 )  −  1 )  ≤  ( 𝑀  +  𝑁 ) ) ) | 
						
							| 47 | 44 45 46 | syl2anc | ⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( ( ( 𝐼 ‘ 𝐶 )  −  1 )  <  ( 𝑀  +  𝑁 )  →  ( ( 𝐼 ‘ 𝐶 )  −  1 )  ≤  ( 𝑀  +  𝑁 ) ) ) | 
						
							| 48 | 43 47 | sylbid | ⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( ( 𝐼 ‘ 𝐶 )  ≤  ( 𝑀  +  𝑁 )  →  ( ( 𝐼 ‘ 𝐶 )  −  1 )  ≤  ( 𝑀  +  𝑁 ) ) ) | 
						
							| 49 | 41 48 | mpd | ⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( ( 𝐼 ‘ 𝐶 )  −  1 )  ≤  ( 𝑀  +  𝑁 ) ) | 
						
							| 50 |  | eluz2 | ⊢ ( ( 𝑀  +  𝑁 )  ∈  ( ℤ≥ ‘ ( ( 𝐼 ‘ 𝐶 )  −  1 ) )  ↔  ( ( ( 𝐼 ‘ 𝐶 )  −  1 )  ∈  ℤ  ∧  ( 𝑀  +  𝑁 )  ∈  ℤ  ∧  ( ( 𝐼 ‘ 𝐶 )  −  1 )  ≤  ( 𝑀  +  𝑁 ) ) ) | 
						
							| 51 | 35 39 49 50 | syl3anbrc | ⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( 𝑀  +  𝑁 )  ∈  ( ℤ≥ ‘ ( ( 𝐼 ‘ 𝐶 )  −  1 ) ) ) | 
						
							| 52 |  | fzss2 | ⊢ ( ( 𝑀  +  𝑁 )  ∈  ( ℤ≥ ‘ ( ( 𝐼 ‘ 𝐶 )  −  1 ) )  →  ( 0 ... ( ( 𝐼 ‘ 𝐶 )  −  1 ) )  ⊆  ( 0 ... ( 𝑀  +  𝑁 ) ) ) | 
						
							| 53 | 51 52 | syl | ⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( 0 ... ( ( 𝐼 ‘ 𝐶 )  −  1 ) )  ⊆  ( 0 ... ( 𝑀  +  𝑁 ) ) ) | 
						
							| 54 | 53 | sselda | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 )  −  1 )  ∈  ( 0 ... ( ( 𝐼 ‘ 𝐶 )  −  1 ) ) )  →  ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 )  −  1 )  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) ) | 
						
							| 55 | 31 54 | syldan | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 )  −  1 )  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) ) | 
						
							| 56 | 1 2 3 4 5 6 7 8 9 10 11 | ballotlemfg | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 )  −  1 )  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) )  →  ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 )  −  1 ) )  =  ( 𝐶  ↑  ( 1 ... ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 )  −  1 ) ) ) ) | 
						
							| 57 | 55 56 | syldan | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 )  −  1 ) )  =  ( 𝐶  ↑  ( 1 ... ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 )  −  1 ) ) ) ) | 
						
							| 58 | 1 2 3 4 5 6 7 8 9 10 11 | ballotlemfrc | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝐽 )  =  ( 𝐶  ↑  ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) ) ) | 
						
							| 59 | 57 58 | oveq12d | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 )  −  1 ) )  +  ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝐽 ) )  =  ( ( 𝐶  ↑  ( 1 ... ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 )  −  1 ) ) )  +  ( 𝐶  ↑  ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) ) ) ) | 
						
							| 60 |  | fzsplit3 | ⊢ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 )  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) )  →  ( 1 ... ( 𝐼 ‘ 𝐶 ) )  =  ( ( 1 ... ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 )  −  1 ) )  ∪  ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) ) ) | 
						
							| 61 | 12 60 | syl | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( 1 ... ( 𝐼 ‘ 𝐶 ) )  =  ( ( 1 ... ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 )  −  1 ) )  ∪  ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) ) ) | 
						
							| 62 | 61 | oveq2d | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( 𝐶  ↑  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  =  ( 𝐶  ↑  ( ( 1 ... ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 )  −  1 ) )  ∪  ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) ) ) ) | 
						
							| 63 |  | fz1ssfz0 | ⊢ ( 1 ... ( 𝑀  +  𝑁 ) )  ⊆  ( 0 ... ( 𝑀  +  𝑁 ) ) | 
						
							| 64 | 63 | sseli | ⊢ ( ( 𝐼 ‘ 𝐶 )  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  →  ( 𝐼 ‘ 𝐶 )  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) ) | 
						
							| 65 | 1 2 3 4 5 6 7 8 9 10 11 | ballotlemfg | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  ( 𝐼 ‘ 𝐶 )  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) )  →  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝐼 ‘ 𝐶 ) )  =  ( 𝐶  ↑  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) ) | 
						
							| 66 | 64 65 | sylan2 | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  ( 𝐼 ‘ 𝐶 )  ∈  ( 1 ... ( 𝑀  +  𝑁 ) ) )  →  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝐼 ‘ 𝐶 ) )  =  ( 𝐶  ↑  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) ) | 
						
							| 67 | 16 66 | syldan | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝐼 ‘ 𝐶 ) )  =  ( 𝐶  ↑  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) ) | 
						
							| 68 | 15 | simprd | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝐼 ‘ 𝐶 ) )  =  0 ) | 
						
							| 69 | 67 68 | eqtr3d | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( 𝐶  ↑  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  =  0 ) | 
						
							| 70 |  | fzfi | ⊢ ( 1 ... ( 𝑀  +  𝑁 ) )  ∈  Fin | 
						
							| 71 |  | eldifi | ⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  𝐶  ∈  𝑂 ) | 
						
							| 72 | 1 2 3 | ballotlemelo | ⊢ ( 𝐶  ∈  𝑂  ↔  ( 𝐶  ⊆  ( 1 ... ( 𝑀  +  𝑁 ) )  ∧  ( ♯ ‘ 𝐶 )  =  𝑀 ) ) | 
						
							| 73 | 72 | simplbi | ⊢ ( 𝐶  ∈  𝑂  →  𝐶  ⊆  ( 1 ... ( 𝑀  +  𝑁 ) ) ) | 
						
							| 74 | 71 73 | syl | ⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  𝐶  ⊆  ( 1 ... ( 𝑀  +  𝑁 ) ) ) | 
						
							| 75 |  | ssfi | ⊢ ( ( ( 1 ... ( 𝑀  +  𝑁 ) )  ∈  Fin  ∧  𝐶  ⊆  ( 1 ... ( 𝑀  +  𝑁 ) ) )  →  𝐶  ∈  Fin ) | 
						
							| 76 | 70 74 75 | sylancr | ⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  𝐶  ∈  Fin ) | 
						
							| 77 | 76 | adantr | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  𝐶  ∈  Fin ) | 
						
							| 78 |  | fzfid | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( 1 ... ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 )  −  1 ) )  ∈  Fin ) | 
						
							| 79 |  | fzfid | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) )  ∈  Fin ) | 
						
							| 80 | 25 | zred | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 )  ∈  ℝ ) | 
						
							| 81 |  | ltm1 | ⊢ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 )  ∈  ℝ  →  ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 )  −  1 )  <  ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ) | 
						
							| 82 |  | fzdisj | ⊢ ( ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 )  −  1 )  <  ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 )  →  ( ( 1 ... ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 )  −  1 ) )  ∩  ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) )  =  ∅ ) | 
						
							| 83 | 80 81 82 | 3syl | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( ( 1 ... ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 )  −  1 ) )  ∩  ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) )  =  ∅ ) | 
						
							| 84 | 1 2 3 4 5 6 7 8 9 10 11 77 78 79 83 | ballotlemgun | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( 𝐶  ↑  ( ( 1 ... ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 )  −  1 ) )  ∪  ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) ) )  =  ( ( 𝐶  ↑  ( 1 ... ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 )  −  1 ) ) )  +  ( 𝐶  ↑  ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) ) ) ) | 
						
							| 85 | 62 69 84 | 3eqtr3rd | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( ( 𝐶  ↑  ( 1 ... ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 )  −  1 ) ) )  +  ( 𝐶  ↑  ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) ) )  =  0 ) | 
						
							| 86 | 59 85 | eqtrd | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 )  −  1 ) )  +  ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝐽 ) )  =  0 ) | 
						
							| 87 | 71 | adantr | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  𝐶  ∈  𝑂 ) | 
						
							| 88 | 25 13 | zsubcld | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 )  −  1 )  ∈  ℤ ) | 
						
							| 89 | 1 2 3 4 5 87 88 | ballotlemfelz | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 )  −  1 ) )  ∈  ℤ ) | 
						
							| 90 | 89 | zcnd | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 )  −  1 ) )  ∈  ℂ ) | 
						
							| 91 | 1 2 3 4 5 6 7 8 9 10 | ballotlemro | ⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( 𝑅 ‘ 𝐶 )  ∈  𝑂 ) | 
						
							| 92 | 91 | adantr | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( 𝑅 ‘ 𝐶 )  ∈  𝑂 ) | 
						
							| 93 | 21 | elfzelzd | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  𝐽  ∈  ℤ ) | 
						
							| 94 | 1 2 3 4 5 92 93 | ballotlemfelz | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝐽 )  ∈  ℤ ) | 
						
							| 95 | 94 | zcnd | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝐽 )  ∈  ℂ ) | 
						
							| 96 |  | addeq0 | ⊢ ( ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 )  −  1 ) )  ∈  ℂ  ∧  ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝐽 )  ∈  ℂ )  →  ( ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 )  −  1 ) )  +  ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝐽 ) )  =  0  ↔  ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 )  −  1 ) )  =  - ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝐽 ) ) ) | 
						
							| 97 | 90 95 96 | syl2anc | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 )  −  1 ) )  +  ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝐽 ) )  =  0  ↔  ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 )  −  1 ) )  =  - ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝐽 ) ) ) | 
						
							| 98 | 86 97 | mpbid | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 )  −  1 ) )  =  - ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝐽 ) ) |