Step |
Hyp |
Ref |
Expression |
1 |
|
crctcshwlkn0lem.s |
⊢ ( 𝜑 → 𝑆 ∈ ( 1 ..^ 𝑁 ) ) |
2 |
|
crctcshwlkn0lem.q |
⊢ 𝑄 = ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ if ( 𝑥 ≤ ( 𝑁 − 𝑆 ) , ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) ) |
3 |
|
crctcshwlkn0lem.h |
⊢ 𝐻 = ( 𝐹 cyclShift 𝑆 ) |
4 |
|
crctcshwlkn0lem.n |
⊢ 𝑁 = ( ♯ ‘ 𝐹 ) |
5 |
|
crctcshwlkn0lem.f |
⊢ ( 𝜑 → 𝐹 ∈ Word 𝐴 ) |
6 |
|
crctcshwlkn0lem.p |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) |
7 |
|
elfzoelz |
⊢ ( 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) → 𝑗 ∈ ℤ ) |
8 |
7
|
zcnd |
⊢ ( 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) → 𝑗 ∈ ℂ ) |
9 |
8
|
adantl |
⊢ ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → 𝑗 ∈ ℂ ) |
10 |
|
elfzoelz |
⊢ ( 𝑆 ∈ ( 1 ..^ 𝑁 ) → 𝑆 ∈ ℤ ) |
11 |
10
|
zcnd |
⊢ ( 𝑆 ∈ ( 1 ..^ 𝑁 ) → 𝑆 ∈ ℂ ) |
12 |
11
|
adantr |
⊢ ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → 𝑆 ∈ ℂ ) |
13 |
|
1cnd |
⊢ ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → 1 ∈ ℂ ) |
14 |
9 12 13
|
add32d |
⊢ ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( ( 𝑗 + 𝑆 ) + 1 ) = ( ( 𝑗 + 1 ) + 𝑆 ) ) |
15 |
|
elfzo1 |
⊢ ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ↔ ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ) |
16 |
|
elfzonn0 |
⊢ ( 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) → 𝑗 ∈ ℕ0 ) |
17 |
|
nnnn0 |
⊢ ( 𝑆 ∈ ℕ → 𝑆 ∈ ℕ0 ) |
18 |
|
nn0addcl |
⊢ ( ( 𝑗 ∈ ℕ0 ∧ 𝑆 ∈ ℕ0 ) → ( 𝑗 + 𝑆 ) ∈ ℕ0 ) |
19 |
18
|
ex |
⊢ ( 𝑗 ∈ ℕ0 → ( 𝑆 ∈ ℕ0 → ( 𝑗 + 𝑆 ) ∈ ℕ0 ) ) |
20 |
16 17 19
|
syl2imc |
⊢ ( 𝑆 ∈ ℕ → ( 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) → ( 𝑗 + 𝑆 ) ∈ ℕ0 ) ) |
21 |
20
|
3ad2ant1 |
⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → ( 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) → ( 𝑗 + 𝑆 ) ∈ ℕ0 ) ) |
22 |
15 21
|
sylbi |
⊢ ( 𝑆 ∈ ( 1 ..^ 𝑁 ) → ( 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) → ( 𝑗 + 𝑆 ) ∈ ℕ0 ) ) |
23 |
22
|
imp |
⊢ ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( 𝑗 + 𝑆 ) ∈ ℕ0 ) |
24 |
|
fzo0ss1 |
⊢ ( 1 ..^ 𝑁 ) ⊆ ( 0 ..^ 𝑁 ) |
25 |
24
|
sseli |
⊢ ( 𝑆 ∈ ( 1 ..^ 𝑁 ) → 𝑆 ∈ ( 0 ..^ 𝑁 ) ) |
26 |
|
elfzo0 |
⊢ ( 𝑆 ∈ ( 0 ..^ 𝑁 ) ↔ ( 𝑆 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ) |
27 |
26
|
simp2bi |
⊢ ( 𝑆 ∈ ( 0 ..^ 𝑁 ) → 𝑁 ∈ ℕ ) |
28 |
25 27
|
syl |
⊢ ( 𝑆 ∈ ( 1 ..^ 𝑁 ) → 𝑁 ∈ ℕ ) |
29 |
28
|
adantr |
⊢ ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → 𝑁 ∈ ℕ ) |
30 |
|
elfzo0 |
⊢ ( 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ↔ ( 𝑗 ∈ ℕ0 ∧ ( 𝑁 − 𝑆 ) ∈ ℕ ∧ 𝑗 < ( 𝑁 − 𝑆 ) ) ) |
31 |
|
nn0re |
⊢ ( 𝑗 ∈ ℕ0 → 𝑗 ∈ ℝ ) |
32 |
|
nnre |
⊢ ( 𝑆 ∈ ℕ → 𝑆 ∈ ℝ ) |
33 |
|
nnre |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) |
34 |
32 33
|
anim12i |
⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
35 |
34
|
3adant3 |
⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → ( 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
36 |
15 35
|
sylbi |
⊢ ( 𝑆 ∈ ( 1 ..^ 𝑁 ) → ( 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
37 |
31 36
|
anim12i |
⊢ ( ( 𝑗 ∈ ℕ0 ∧ 𝑆 ∈ ( 1 ..^ 𝑁 ) ) → ( 𝑗 ∈ ℝ ∧ ( 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) ) |
38 |
|
3anass |
⊢ ( ( 𝑗 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ↔ ( 𝑗 ∈ ℝ ∧ ( 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) ) |
39 |
37 38
|
sylibr |
⊢ ( ( 𝑗 ∈ ℕ0 ∧ 𝑆 ∈ ( 1 ..^ 𝑁 ) ) → ( 𝑗 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
40 |
|
ltaddsub |
⊢ ( ( 𝑗 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( 𝑗 + 𝑆 ) < 𝑁 ↔ 𝑗 < ( 𝑁 − 𝑆 ) ) ) |
41 |
40
|
bicomd |
⊢ ( ( 𝑗 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑗 < ( 𝑁 − 𝑆 ) ↔ ( 𝑗 + 𝑆 ) < 𝑁 ) ) |
42 |
39 41
|
syl |
⊢ ( ( 𝑗 ∈ ℕ0 ∧ 𝑆 ∈ ( 1 ..^ 𝑁 ) ) → ( 𝑗 < ( 𝑁 − 𝑆 ) ↔ ( 𝑗 + 𝑆 ) < 𝑁 ) ) |
43 |
42
|
biimpd |
⊢ ( ( 𝑗 ∈ ℕ0 ∧ 𝑆 ∈ ( 1 ..^ 𝑁 ) ) → ( 𝑗 < ( 𝑁 − 𝑆 ) → ( 𝑗 + 𝑆 ) < 𝑁 ) ) |
44 |
43
|
ex |
⊢ ( 𝑗 ∈ ℕ0 → ( 𝑆 ∈ ( 1 ..^ 𝑁 ) → ( 𝑗 < ( 𝑁 − 𝑆 ) → ( 𝑗 + 𝑆 ) < 𝑁 ) ) ) |
45 |
44
|
com23 |
⊢ ( 𝑗 ∈ ℕ0 → ( 𝑗 < ( 𝑁 − 𝑆 ) → ( 𝑆 ∈ ( 1 ..^ 𝑁 ) → ( 𝑗 + 𝑆 ) < 𝑁 ) ) ) |
46 |
45
|
a1d |
⊢ ( 𝑗 ∈ ℕ0 → ( ( 𝑁 − 𝑆 ) ∈ ℕ → ( 𝑗 < ( 𝑁 − 𝑆 ) → ( 𝑆 ∈ ( 1 ..^ 𝑁 ) → ( 𝑗 + 𝑆 ) < 𝑁 ) ) ) ) |
47 |
46
|
3imp |
⊢ ( ( 𝑗 ∈ ℕ0 ∧ ( 𝑁 − 𝑆 ) ∈ ℕ ∧ 𝑗 < ( 𝑁 − 𝑆 ) ) → ( 𝑆 ∈ ( 1 ..^ 𝑁 ) → ( 𝑗 + 𝑆 ) < 𝑁 ) ) |
48 |
30 47
|
sylbi |
⊢ ( 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) → ( 𝑆 ∈ ( 1 ..^ 𝑁 ) → ( 𝑗 + 𝑆 ) < 𝑁 ) ) |
49 |
48
|
impcom |
⊢ ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( 𝑗 + 𝑆 ) < 𝑁 ) |
50 |
|
elfzo0 |
⊢ ( ( 𝑗 + 𝑆 ) ∈ ( 0 ..^ 𝑁 ) ↔ ( ( 𝑗 + 𝑆 ) ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ ( 𝑗 + 𝑆 ) < 𝑁 ) ) |
51 |
23 29 49 50
|
syl3anbrc |
⊢ ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( 𝑗 + 𝑆 ) ∈ ( 0 ..^ 𝑁 ) ) |
52 |
51
|
adantr |
⊢ ( ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) ∧ ( ( 𝑗 + 𝑆 ) + 1 ) = ( ( 𝑗 + 1 ) + 𝑆 ) ) → ( 𝑗 + 𝑆 ) ∈ ( 0 ..^ 𝑁 ) ) |
53 |
|
fveq2 |
⊢ ( 𝑖 = ( 𝑗 + 𝑆 ) → ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) ) |
54 |
53
|
adantl |
⊢ ( ( ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) ∧ ( ( 𝑗 + 𝑆 ) + 1 ) = ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ 𝑖 = ( 𝑗 + 𝑆 ) ) → ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) ) |
55 |
|
fvoveq1 |
⊢ ( 𝑖 = ( 𝑗 + 𝑆 ) → ( 𝑃 ‘ ( 𝑖 + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 𝑆 ) + 1 ) ) ) |
56 |
|
simpr |
⊢ ( ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) ∧ ( ( 𝑗 + 𝑆 ) + 1 ) = ( ( 𝑗 + 1 ) + 𝑆 ) ) → ( ( 𝑗 + 𝑆 ) + 1 ) = ( ( 𝑗 + 1 ) + 𝑆 ) ) |
57 |
56
|
fveq2d |
⊢ ( ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) ∧ ( ( 𝑗 + 𝑆 ) + 1 ) = ( ( 𝑗 + 1 ) + 𝑆 ) ) → ( 𝑃 ‘ ( ( 𝑗 + 𝑆 ) + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ) |
58 |
55 57
|
sylan9eqr |
⊢ ( ( ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) ∧ ( ( 𝑗 + 𝑆 ) + 1 ) = ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ 𝑖 = ( 𝑗 + 𝑆 ) ) → ( 𝑃 ‘ ( 𝑖 + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ) |
59 |
54 58
|
eqeq12d |
⊢ ( ( ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) ∧ ( ( 𝑗 + 𝑆 ) + 1 ) = ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ 𝑖 = ( 𝑗 + 𝑆 ) ) → ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) ↔ ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ) ) |
60 |
|
2fveq3 |
⊢ ( 𝑖 = ( 𝑗 + 𝑆 ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) |
61 |
53
|
sneqd |
⊢ ( 𝑖 = ( 𝑗 + 𝑆 ) → { ( 𝑃 ‘ 𝑖 ) } = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) } ) |
62 |
60 61
|
eqeq12d |
⊢ ( 𝑖 = ( 𝑗 + 𝑆 ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } ↔ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) } ) ) |
63 |
62
|
adantl |
⊢ ( ( ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) ∧ ( ( 𝑗 + 𝑆 ) + 1 ) = ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ 𝑖 = ( 𝑗 + 𝑆 ) ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } ↔ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) } ) ) |
64 |
54 58
|
preq12d |
⊢ ( ( ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) ∧ ( ( 𝑗 + 𝑆 ) + 1 ) = ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ 𝑖 = ( 𝑗 + 𝑆 ) ) → { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) } ) |
65 |
60
|
adantl |
⊢ ( ( ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) ∧ ( ( 𝑗 + 𝑆 ) + 1 ) = ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ 𝑖 = ( 𝑗 + 𝑆 ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) |
66 |
64 65
|
sseq12d |
⊢ ( ( ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) ∧ ( ( 𝑗 + 𝑆 ) + 1 ) = ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ 𝑖 = ( 𝑗 + 𝑆 ) ) → ( { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ↔ { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) ) |
67 |
59 63 66
|
ifpbi123d |
⊢ ( ( ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) ∧ ( ( 𝑗 + 𝑆 ) + 1 ) = ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ 𝑖 = ( 𝑗 + 𝑆 ) ) → ( if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ↔ if- ( ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) } , { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) ) ) |
68 |
52 67
|
rspcdv |
⊢ ( ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) ∧ ( ( 𝑗 + 𝑆 ) + 1 ) = ( ( 𝑗 + 1 ) + 𝑆 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) → if- ( ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) } , { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) ) ) |
69 |
14 68
|
mpdan |
⊢ ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) → if- ( ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) } , { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) ) ) |
70 |
1 69
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) → if- ( ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) } , { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) ) ) |
71 |
70
|
ex |
⊢ ( 𝜑 → ( 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) → if- ( ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) } , { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) ) ) ) |
72 |
6 71
|
mpid |
⊢ ( 𝜑 → ( 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) → if- ( ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) } , { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) ) ) |
73 |
72
|
imp |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → if- ( ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) } , { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) ) |
74 |
|
elfzofz |
⊢ ( 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) → 𝑗 ∈ ( 0 ... ( 𝑁 − 𝑆 ) ) ) |
75 |
1 2
|
crctcshwlkn0lem2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 𝑆 ) ) ) → ( 𝑄 ‘ 𝑗 ) = ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) ) |
76 |
74 75
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( 𝑄 ‘ 𝑗 ) = ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) ) |
77 |
|
fzofzp1 |
⊢ ( 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) → ( 𝑗 + 1 ) ∈ ( 0 ... ( 𝑁 − 𝑆 ) ) ) |
78 |
1 2
|
crctcshwlkn0lem2 |
⊢ ( ( 𝜑 ∧ ( 𝑗 + 1 ) ∈ ( 0 ... ( 𝑁 − 𝑆 ) ) ) → ( 𝑄 ‘ ( 𝑗 + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ) |
79 |
77 78
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( 𝑄 ‘ ( 𝑗 + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ) |
80 |
3
|
fveq1i |
⊢ ( 𝐻 ‘ 𝑗 ) = ( ( 𝐹 cyclShift 𝑆 ) ‘ 𝑗 ) |
81 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → 𝐹 ∈ Word 𝐴 ) |
82 |
1 10
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ ℤ ) |
83 |
82
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → 𝑆 ∈ ℤ ) |
84 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
85 |
84
|
adantl |
⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℤ ) |
86 |
|
nnz |
⊢ ( 𝑆 ∈ ℕ → 𝑆 ∈ ℤ ) |
87 |
86
|
adantr |
⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑆 ∈ ℤ ) |
88 |
85 87
|
zsubcld |
⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 − 𝑆 ) ∈ ℤ ) |
89 |
17
|
nn0ge0d |
⊢ ( 𝑆 ∈ ℕ → 0 ≤ 𝑆 ) |
90 |
89
|
adantr |
⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 0 ≤ 𝑆 ) |
91 |
|
subge02 |
⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑆 ∈ ℝ ) → ( 0 ≤ 𝑆 ↔ ( 𝑁 − 𝑆 ) ≤ 𝑁 ) ) |
92 |
33 32 91
|
syl2anr |
⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 0 ≤ 𝑆 ↔ ( 𝑁 − 𝑆 ) ≤ 𝑁 ) ) |
93 |
90 92
|
mpbid |
⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 − 𝑆 ) ≤ 𝑁 ) |
94 |
88 85 93
|
3jca |
⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑁 − 𝑆 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ( 𝑁 − 𝑆 ) ≤ 𝑁 ) ) |
95 |
94
|
3adant3 |
⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → ( ( 𝑁 − 𝑆 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ( 𝑁 − 𝑆 ) ≤ 𝑁 ) ) |
96 |
15 95
|
sylbi |
⊢ ( 𝑆 ∈ ( 1 ..^ 𝑁 ) → ( ( 𝑁 − 𝑆 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ( 𝑁 − 𝑆 ) ≤ 𝑁 ) ) |
97 |
|
eluz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑁 − 𝑆 ) ) ↔ ( ( 𝑁 − 𝑆 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ( 𝑁 − 𝑆 ) ≤ 𝑁 ) ) |
98 |
96 97
|
sylibr |
⊢ ( 𝑆 ∈ ( 1 ..^ 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑁 − 𝑆 ) ) ) |
99 |
|
fzoss2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑁 − 𝑆 ) ) → ( 0 ..^ ( 𝑁 − 𝑆 ) ) ⊆ ( 0 ..^ 𝑁 ) ) |
100 |
1 98 99
|
3syl |
⊢ ( 𝜑 → ( 0 ..^ ( 𝑁 − 𝑆 ) ) ⊆ ( 0 ..^ 𝑁 ) ) |
101 |
100
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → 𝑗 ∈ ( 0 ..^ 𝑁 ) ) |
102 |
4
|
oveq2i |
⊢ ( 0 ..^ 𝑁 ) = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) |
103 |
101 102
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
104 |
|
cshwidxmod |
⊢ ( ( 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐹 cyclShift 𝑆 ) ‘ 𝑗 ) = ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) |
105 |
81 83 103 104
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( ( 𝐹 cyclShift 𝑆 ) ‘ 𝑗 ) = ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) |
106 |
4
|
eqcomi |
⊢ ( ♯ ‘ 𝐹 ) = 𝑁 |
107 |
106
|
oveq2i |
⊢ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) = ( ( 𝑗 + 𝑆 ) mod 𝑁 ) |
108 |
21
|
imp |
⊢ ( ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( 𝑗 + 𝑆 ) ∈ ℕ0 ) |
109 |
|
nnm1nn0 |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ℕ0 ) |
110 |
109
|
3ad2ant2 |
⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → ( 𝑁 − 1 ) ∈ ℕ0 ) |
111 |
110
|
adantr |
⊢ ( ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( 𝑁 − 1 ) ∈ ℕ0 ) |
112 |
31 35
|
anim12i |
⊢ ( ( 𝑗 ∈ ℕ0 ∧ ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ) → ( 𝑗 ∈ ℝ ∧ ( 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) ) |
113 |
112 38
|
sylibr |
⊢ ( ( 𝑗 ∈ ℕ0 ∧ ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ) → ( 𝑗 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
114 |
113 41
|
syl |
⊢ ( ( 𝑗 ∈ ℕ0 ∧ ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ) → ( 𝑗 < ( 𝑁 − 𝑆 ) ↔ ( 𝑗 + 𝑆 ) < 𝑁 ) ) |
115 |
17
|
3ad2ant1 |
⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → 𝑆 ∈ ℕ0 ) |
116 |
115 18
|
sylan2 |
⊢ ( ( 𝑗 ∈ ℕ0 ∧ ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ) → ( 𝑗 + 𝑆 ) ∈ ℕ0 ) |
117 |
116
|
nn0zd |
⊢ ( ( 𝑗 ∈ ℕ0 ∧ ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ) → ( 𝑗 + 𝑆 ) ∈ ℤ ) |
118 |
84
|
3ad2ant2 |
⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → 𝑁 ∈ ℤ ) |
119 |
118
|
adantl |
⊢ ( ( 𝑗 ∈ ℕ0 ∧ ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ) → 𝑁 ∈ ℤ ) |
120 |
|
zltlem1 |
⊢ ( ( ( 𝑗 + 𝑆 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑗 + 𝑆 ) < 𝑁 ↔ ( 𝑗 + 𝑆 ) ≤ ( 𝑁 − 1 ) ) ) |
121 |
117 119 120
|
syl2anc |
⊢ ( ( 𝑗 ∈ ℕ0 ∧ ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ) → ( ( 𝑗 + 𝑆 ) < 𝑁 ↔ ( 𝑗 + 𝑆 ) ≤ ( 𝑁 − 1 ) ) ) |
122 |
121
|
biimpd |
⊢ ( ( 𝑗 ∈ ℕ0 ∧ ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ) → ( ( 𝑗 + 𝑆 ) < 𝑁 → ( 𝑗 + 𝑆 ) ≤ ( 𝑁 − 1 ) ) ) |
123 |
114 122
|
sylbid |
⊢ ( ( 𝑗 ∈ ℕ0 ∧ ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ) → ( 𝑗 < ( 𝑁 − 𝑆 ) → ( 𝑗 + 𝑆 ) ≤ ( 𝑁 − 1 ) ) ) |
124 |
123
|
impancom |
⊢ ( ( 𝑗 ∈ ℕ0 ∧ 𝑗 < ( 𝑁 − 𝑆 ) ) → ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → ( 𝑗 + 𝑆 ) ≤ ( 𝑁 − 1 ) ) ) |
125 |
124
|
3adant2 |
⊢ ( ( 𝑗 ∈ ℕ0 ∧ ( 𝑁 − 𝑆 ) ∈ ℕ ∧ 𝑗 < ( 𝑁 − 𝑆 ) ) → ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → ( 𝑗 + 𝑆 ) ≤ ( 𝑁 − 1 ) ) ) |
126 |
30 125
|
sylbi |
⊢ ( 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) → ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → ( 𝑗 + 𝑆 ) ≤ ( 𝑁 − 1 ) ) ) |
127 |
126
|
impcom |
⊢ ( ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( 𝑗 + 𝑆 ) ≤ ( 𝑁 − 1 ) ) |
128 |
108 111 127
|
3jca |
⊢ ( ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( ( 𝑗 + 𝑆 ) ∈ ℕ0 ∧ ( 𝑁 − 1 ) ∈ ℕ0 ∧ ( 𝑗 + 𝑆 ) ≤ ( 𝑁 − 1 ) ) ) |
129 |
15 128
|
sylanb |
⊢ ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( ( 𝑗 + 𝑆 ) ∈ ℕ0 ∧ ( 𝑁 − 1 ) ∈ ℕ0 ∧ ( 𝑗 + 𝑆 ) ≤ ( 𝑁 − 1 ) ) ) |
130 |
|
elfz2nn0 |
⊢ ( ( 𝑗 + 𝑆 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ↔ ( ( 𝑗 + 𝑆 ) ∈ ℕ0 ∧ ( 𝑁 − 1 ) ∈ ℕ0 ∧ ( 𝑗 + 𝑆 ) ≤ ( 𝑁 − 1 ) ) ) |
131 |
129 130
|
sylibr |
⊢ ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( 𝑗 + 𝑆 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
132 |
|
zaddcl |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑆 ∈ ℤ ) → ( 𝑗 + 𝑆 ) ∈ ℤ ) |
133 |
7 10 132
|
syl2anr |
⊢ ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( 𝑗 + 𝑆 ) ∈ ℤ ) |
134 |
|
zmodid2 |
⊢ ( ( ( 𝑗 + 𝑆 ) ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝑗 + 𝑆 ) mod 𝑁 ) = ( 𝑗 + 𝑆 ) ↔ ( 𝑗 + 𝑆 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ) |
135 |
133 29 134
|
syl2anc |
⊢ ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( ( ( 𝑗 + 𝑆 ) mod 𝑁 ) = ( 𝑗 + 𝑆 ) ↔ ( 𝑗 + 𝑆 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ) |
136 |
131 135
|
mpbird |
⊢ ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( ( 𝑗 + 𝑆 ) mod 𝑁 ) = ( 𝑗 + 𝑆 ) ) |
137 |
1 136
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( ( 𝑗 + 𝑆 ) mod 𝑁 ) = ( 𝑗 + 𝑆 ) ) |
138 |
107 137
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) = ( 𝑗 + 𝑆 ) ) |
139 |
138
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) = ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) |
140 |
105 139
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( ( 𝐹 cyclShift 𝑆 ) ‘ 𝑗 ) = ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) |
141 |
80 140
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( 𝐻 ‘ 𝑗 ) = ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) |
142 |
141
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) |
143 |
|
simp1 |
⊢ ( ( ( 𝑄 ‘ 𝑗 ) = ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) ∧ ( 𝑄 ‘ ( 𝑗 + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) → ( 𝑄 ‘ 𝑗 ) = ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) ) |
144 |
|
simp2 |
⊢ ( ( ( 𝑄 ‘ 𝑗 ) = ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) ∧ ( 𝑄 ‘ ( 𝑗 + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) → ( 𝑄 ‘ ( 𝑗 + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ) |
145 |
143 144
|
eqeq12d |
⊢ ( ( ( 𝑄 ‘ 𝑗 ) = ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) ∧ ( 𝑄 ‘ ( 𝑗 + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) → ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ↔ ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ) ) |
146 |
|
simp3 |
⊢ ( ( ( 𝑄 ‘ 𝑗 ) = ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) ∧ ( 𝑄 ‘ ( 𝑗 + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) → ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) |
147 |
143
|
sneqd |
⊢ ( ( ( 𝑄 ‘ 𝑗 ) = ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) ∧ ( 𝑄 ‘ ( 𝑗 + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) → { ( 𝑄 ‘ 𝑗 ) } = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) } ) |
148 |
146 147
|
eqeq12d |
⊢ ( ( ( 𝑄 ‘ 𝑗 ) = ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) ∧ ( 𝑄 ‘ ( 𝑗 + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) → ( ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } ↔ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) } ) ) |
149 |
143 144
|
preq12d |
⊢ ( ( ( 𝑄 ‘ 𝑗 ) = ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) ∧ ( 𝑄 ‘ ( 𝑗 + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) → { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) } ) |
150 |
149 146
|
sseq12d |
⊢ ( ( ( 𝑄 ‘ 𝑗 ) = ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) ∧ ( 𝑄 ‘ ( 𝑗 + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) → ( { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ↔ { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) ) |
151 |
145 148 150
|
ifpbi123d |
⊢ ( ( ( 𝑄 ‘ 𝑗 ) = ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) ∧ ( 𝑄 ‘ ( 𝑗 + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) → ( if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ↔ if- ( ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) } , { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) ) ) |
152 |
76 79 142 151
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ↔ if- ( ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) } , { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) ) ) |
153 |
73 152
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) |
154 |
153
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) |