Metamath Proof Explorer


Theorem crctcshwlkn0lem4

Description: Lemma for crctcshwlkn0 . (Contributed by AV, 12-Mar-2021)

Ref Expression
Hypotheses crctcshwlkn0lem.s ( 𝜑𝑆 ∈ ( 1 ..^ 𝑁 ) )
crctcshwlkn0lem.q 𝑄 = ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ if ( 𝑥 ≤ ( 𝑁𝑆 ) , ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) )
crctcshwlkn0lem.h 𝐻 = ( 𝐹 cyclShift 𝑆 )
crctcshwlkn0lem.n 𝑁 = ( ♯ ‘ 𝐹 )
crctcshwlkn0lem.f ( 𝜑𝐹 ∈ Word 𝐴 )
crctcshwlkn0lem.p ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹𝑖 ) ) = { ( 𝑃𝑖 ) } , { ( 𝑃𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹𝑖 ) ) ) )
Assertion crctcshwlkn0lem4 ( 𝜑 → ∀ 𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) if- ( ( 𝑄𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻𝑗 ) ) = { ( 𝑄𝑗 ) } , { ( 𝑄𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻𝑗 ) ) ) )

Proof

Step Hyp Ref Expression
1 crctcshwlkn0lem.s ( 𝜑𝑆 ∈ ( 1 ..^ 𝑁 ) )
2 crctcshwlkn0lem.q 𝑄 = ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ if ( 𝑥 ≤ ( 𝑁𝑆 ) , ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) )
3 crctcshwlkn0lem.h 𝐻 = ( 𝐹 cyclShift 𝑆 )
4 crctcshwlkn0lem.n 𝑁 = ( ♯ ‘ 𝐹 )
5 crctcshwlkn0lem.f ( 𝜑𝐹 ∈ Word 𝐴 )
6 crctcshwlkn0lem.p ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹𝑖 ) ) = { ( 𝑃𝑖 ) } , { ( 𝑃𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹𝑖 ) ) ) )
7 elfzoelz ( 𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) → 𝑗 ∈ ℤ )
8 7 zcnd ( 𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) → 𝑗 ∈ ℂ )
9 8 adantl ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) ) → 𝑗 ∈ ℂ )
10 elfzoelz ( 𝑆 ∈ ( 1 ..^ 𝑁 ) → 𝑆 ∈ ℤ )
11 10 zcnd ( 𝑆 ∈ ( 1 ..^ 𝑁 ) → 𝑆 ∈ ℂ )
12 11 adantr ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) ) → 𝑆 ∈ ℂ )
13 1cnd ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) ) → 1 ∈ ℂ )
14 9 12 13 add32d ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) ) → ( ( 𝑗 + 𝑆 ) + 1 ) = ( ( 𝑗 + 1 ) + 𝑆 ) )
15 elfzo1 ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ↔ ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) )
16 elfzonn0 ( 𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) → 𝑗 ∈ ℕ0 )
17 nnnn0 ( 𝑆 ∈ ℕ → 𝑆 ∈ ℕ0 )
18 nn0addcl ( ( 𝑗 ∈ ℕ0𝑆 ∈ ℕ0 ) → ( 𝑗 + 𝑆 ) ∈ ℕ0 )
19 18 ex ( 𝑗 ∈ ℕ0 → ( 𝑆 ∈ ℕ0 → ( 𝑗 + 𝑆 ) ∈ ℕ0 ) )
20 16 17 19 syl2imc ( 𝑆 ∈ ℕ → ( 𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) → ( 𝑗 + 𝑆 ) ∈ ℕ0 ) )
21 20 3ad2ant1 ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → ( 𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) → ( 𝑗 + 𝑆 ) ∈ ℕ0 ) )
22 15 21 sylbi ( 𝑆 ∈ ( 1 ..^ 𝑁 ) → ( 𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) → ( 𝑗 + 𝑆 ) ∈ ℕ0 ) )
23 22 imp ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) ) → ( 𝑗 + 𝑆 ) ∈ ℕ0 )
24 fzo0ss1 ( 1 ..^ 𝑁 ) ⊆ ( 0 ..^ 𝑁 )
25 24 sseli ( 𝑆 ∈ ( 1 ..^ 𝑁 ) → 𝑆 ∈ ( 0 ..^ 𝑁 ) )
26 elfzo0 ( 𝑆 ∈ ( 0 ..^ 𝑁 ) ↔ ( 𝑆 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) )
27 26 simp2bi ( 𝑆 ∈ ( 0 ..^ 𝑁 ) → 𝑁 ∈ ℕ )
28 25 27 syl ( 𝑆 ∈ ( 1 ..^ 𝑁 ) → 𝑁 ∈ ℕ )
29 28 adantr ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) ) → 𝑁 ∈ ℕ )
30 elfzo0 ( 𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) ↔ ( 𝑗 ∈ ℕ0 ∧ ( 𝑁𝑆 ) ∈ ℕ ∧ 𝑗 < ( 𝑁𝑆 ) ) )
31 nn0re ( 𝑗 ∈ ℕ0𝑗 ∈ ℝ )
32 nnre ( 𝑆 ∈ ℕ → 𝑆 ∈ ℝ )
33 nnre ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ )
34 32 33 anim12i ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) )
35 34 3adant3 ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → ( 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) )
36 15 35 sylbi ( 𝑆 ∈ ( 1 ..^ 𝑁 ) → ( 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) )
37 31 36 anim12i ( ( 𝑗 ∈ ℕ0𝑆 ∈ ( 1 ..^ 𝑁 ) ) → ( 𝑗 ∈ ℝ ∧ ( 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) )
38 3anass ( ( 𝑗 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ↔ ( 𝑗 ∈ ℝ ∧ ( 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) )
39 37 38 sylibr ( ( 𝑗 ∈ ℕ0𝑆 ∈ ( 1 ..^ 𝑁 ) ) → ( 𝑗 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) )
40 ltaddsub ( ( 𝑗 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( 𝑗 + 𝑆 ) < 𝑁𝑗 < ( 𝑁𝑆 ) ) )
41 40 bicomd ( ( 𝑗 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑗 < ( 𝑁𝑆 ) ↔ ( 𝑗 + 𝑆 ) < 𝑁 ) )
42 39 41 syl ( ( 𝑗 ∈ ℕ0𝑆 ∈ ( 1 ..^ 𝑁 ) ) → ( 𝑗 < ( 𝑁𝑆 ) ↔ ( 𝑗 + 𝑆 ) < 𝑁 ) )
43 42 biimpd ( ( 𝑗 ∈ ℕ0𝑆 ∈ ( 1 ..^ 𝑁 ) ) → ( 𝑗 < ( 𝑁𝑆 ) → ( 𝑗 + 𝑆 ) < 𝑁 ) )
44 43 ex ( 𝑗 ∈ ℕ0 → ( 𝑆 ∈ ( 1 ..^ 𝑁 ) → ( 𝑗 < ( 𝑁𝑆 ) → ( 𝑗 + 𝑆 ) < 𝑁 ) ) )
45 44 com23 ( 𝑗 ∈ ℕ0 → ( 𝑗 < ( 𝑁𝑆 ) → ( 𝑆 ∈ ( 1 ..^ 𝑁 ) → ( 𝑗 + 𝑆 ) < 𝑁 ) ) )
46 45 a1d ( 𝑗 ∈ ℕ0 → ( ( 𝑁𝑆 ) ∈ ℕ → ( 𝑗 < ( 𝑁𝑆 ) → ( 𝑆 ∈ ( 1 ..^ 𝑁 ) → ( 𝑗 + 𝑆 ) < 𝑁 ) ) ) )
47 46 3imp ( ( 𝑗 ∈ ℕ0 ∧ ( 𝑁𝑆 ) ∈ ℕ ∧ 𝑗 < ( 𝑁𝑆 ) ) → ( 𝑆 ∈ ( 1 ..^ 𝑁 ) → ( 𝑗 + 𝑆 ) < 𝑁 ) )
48 30 47 sylbi ( 𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) → ( 𝑆 ∈ ( 1 ..^ 𝑁 ) → ( 𝑗 + 𝑆 ) < 𝑁 ) )
49 48 impcom ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) ) → ( 𝑗 + 𝑆 ) < 𝑁 )
50 elfzo0 ( ( 𝑗 + 𝑆 ) ∈ ( 0 ..^ 𝑁 ) ↔ ( ( 𝑗 + 𝑆 ) ∈ ℕ0𝑁 ∈ ℕ ∧ ( 𝑗 + 𝑆 ) < 𝑁 ) )
51 23 29 49 50 syl3anbrc ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) ) → ( 𝑗 + 𝑆 ) ∈ ( 0 ..^ 𝑁 ) )
52 51 adantr ( ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) ) ∧ ( ( 𝑗 + 𝑆 ) + 1 ) = ( ( 𝑗 + 1 ) + 𝑆 ) ) → ( 𝑗 + 𝑆 ) ∈ ( 0 ..^ 𝑁 ) )
53 fveq2 ( 𝑖 = ( 𝑗 + 𝑆 ) → ( 𝑃𝑖 ) = ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) )
54 53 adantl ( ( ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) ) ∧ ( ( 𝑗 + 𝑆 ) + 1 ) = ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ 𝑖 = ( 𝑗 + 𝑆 ) ) → ( 𝑃𝑖 ) = ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) )
55 fvoveq1 ( 𝑖 = ( 𝑗 + 𝑆 ) → ( 𝑃 ‘ ( 𝑖 + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 𝑆 ) + 1 ) ) )
56 simpr ( ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) ) ∧ ( ( 𝑗 + 𝑆 ) + 1 ) = ( ( 𝑗 + 1 ) + 𝑆 ) ) → ( ( 𝑗 + 𝑆 ) + 1 ) = ( ( 𝑗 + 1 ) + 𝑆 ) )
57 56 fveq2d ( ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) ) ∧ ( ( 𝑗 + 𝑆 ) + 1 ) = ( ( 𝑗 + 1 ) + 𝑆 ) ) → ( 𝑃 ‘ ( ( 𝑗 + 𝑆 ) + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) )
58 55 57 sylan9eqr ( ( ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) ) ∧ ( ( 𝑗 + 𝑆 ) + 1 ) = ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ 𝑖 = ( 𝑗 + 𝑆 ) ) → ( 𝑃 ‘ ( 𝑖 + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) )
59 54 58 eqeq12d ( ( ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) ) ∧ ( ( 𝑗 + 𝑆 ) + 1 ) = ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ 𝑖 = ( 𝑗 + 𝑆 ) ) → ( ( 𝑃𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) ↔ ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ) )
60 2fveq3 ( 𝑖 = ( 𝑗 + 𝑆 ) → ( 𝐼 ‘ ( 𝐹𝑖 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) )
61 53 sneqd ( 𝑖 = ( 𝑗 + 𝑆 ) → { ( 𝑃𝑖 ) } = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) } )
62 60 61 eqeq12d ( 𝑖 = ( 𝑗 + 𝑆 ) → ( ( 𝐼 ‘ ( 𝐹𝑖 ) ) = { ( 𝑃𝑖 ) } ↔ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) } ) )
63 62 adantl ( ( ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) ) ∧ ( ( 𝑗 + 𝑆 ) + 1 ) = ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ 𝑖 = ( 𝑗 + 𝑆 ) ) → ( ( 𝐼 ‘ ( 𝐹𝑖 ) ) = { ( 𝑃𝑖 ) } ↔ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) } ) )
64 54 58 preq12d ( ( ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) ) ∧ ( ( 𝑗 + 𝑆 ) + 1 ) = ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ 𝑖 = ( 𝑗 + 𝑆 ) ) → { ( 𝑃𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) } )
65 60 adantl ( ( ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) ) ∧ ( ( 𝑗 + 𝑆 ) + 1 ) = ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ 𝑖 = ( 𝑗 + 𝑆 ) ) → ( 𝐼 ‘ ( 𝐹𝑖 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) )
66 64 65 sseq12d ( ( ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) ) ∧ ( ( 𝑗 + 𝑆 ) + 1 ) = ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ 𝑖 = ( 𝑗 + 𝑆 ) ) → ( { ( 𝑃𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹𝑖 ) ) ↔ { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) )
67 59 63 66 ifpbi123d ( ( ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) ) ∧ ( ( 𝑗 + 𝑆 ) + 1 ) = ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ 𝑖 = ( 𝑗 + 𝑆 ) ) → ( if- ( ( 𝑃𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹𝑖 ) ) = { ( 𝑃𝑖 ) } , { ( 𝑃𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹𝑖 ) ) ) ↔ if- ( ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) } , { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) ) )
68 52 67 rspcdv ( ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) ) ∧ ( ( 𝑗 + 𝑆 ) + 1 ) = ( ( 𝑗 + 1 ) + 𝑆 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹𝑖 ) ) = { ( 𝑃𝑖 ) } , { ( 𝑃𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹𝑖 ) ) ) → if- ( ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) } , { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) ) )
69 14 68 mpdan ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹𝑖 ) ) = { ( 𝑃𝑖 ) } , { ( 𝑃𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹𝑖 ) ) ) → if- ( ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) } , { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) ) )
70 1 69 sylan ( ( 𝜑𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹𝑖 ) ) = { ( 𝑃𝑖 ) } , { ( 𝑃𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹𝑖 ) ) ) → if- ( ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) } , { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) ) )
71 70 ex ( 𝜑 → ( 𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹𝑖 ) ) = { ( 𝑃𝑖 ) } , { ( 𝑃𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹𝑖 ) ) ) → if- ( ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) } , { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) ) ) )
72 6 71 mpid ( 𝜑 → ( 𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) → if- ( ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) } , { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) ) )
73 72 imp ( ( 𝜑𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) ) → if- ( ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) } , { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) )
74 elfzofz ( 𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) → 𝑗 ∈ ( 0 ... ( 𝑁𝑆 ) ) )
75 1 2 crctcshwlkn0lem2 ( ( 𝜑𝑗 ∈ ( 0 ... ( 𝑁𝑆 ) ) ) → ( 𝑄𝑗 ) = ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) )
76 74 75 sylan2 ( ( 𝜑𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) ) → ( 𝑄𝑗 ) = ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) )
77 fzofzp1 ( 𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) → ( 𝑗 + 1 ) ∈ ( 0 ... ( 𝑁𝑆 ) ) )
78 1 2 crctcshwlkn0lem2 ( ( 𝜑 ∧ ( 𝑗 + 1 ) ∈ ( 0 ... ( 𝑁𝑆 ) ) ) → ( 𝑄 ‘ ( 𝑗 + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) )
79 77 78 sylan2 ( ( 𝜑𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) ) → ( 𝑄 ‘ ( 𝑗 + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) )
80 3 fveq1i ( 𝐻𝑗 ) = ( ( 𝐹 cyclShift 𝑆 ) ‘ 𝑗 )
81 5 adantr ( ( 𝜑𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) ) → 𝐹 ∈ Word 𝐴 )
82 1 10 syl ( 𝜑𝑆 ∈ ℤ )
83 82 adantr ( ( 𝜑𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) ) → 𝑆 ∈ ℤ )
84 nnz ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ )
85 84 adantl ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℤ )
86 nnz ( 𝑆 ∈ ℕ → 𝑆 ∈ ℤ )
87 86 adantr ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑆 ∈ ℤ )
88 85 87 zsubcld ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑁𝑆 ) ∈ ℤ )
89 17 nn0ge0d ( 𝑆 ∈ ℕ → 0 ≤ 𝑆 )
90 89 adantr ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 0 ≤ 𝑆 )
91 subge02 ( ( 𝑁 ∈ ℝ ∧ 𝑆 ∈ ℝ ) → ( 0 ≤ 𝑆 ↔ ( 𝑁𝑆 ) ≤ 𝑁 ) )
92 33 32 91 syl2anr ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 0 ≤ 𝑆 ↔ ( 𝑁𝑆 ) ≤ 𝑁 ) )
93 90 92 mpbid ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑁𝑆 ) ≤ 𝑁 )
94 88 85 93 3jca ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑁𝑆 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ( 𝑁𝑆 ) ≤ 𝑁 ) )
95 94 3adant3 ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → ( ( 𝑁𝑆 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ( 𝑁𝑆 ) ≤ 𝑁 ) )
96 15 95 sylbi ( 𝑆 ∈ ( 1 ..^ 𝑁 ) → ( ( 𝑁𝑆 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ( 𝑁𝑆 ) ≤ 𝑁 ) )
97 eluz2 ( 𝑁 ∈ ( ℤ ‘ ( 𝑁𝑆 ) ) ↔ ( ( 𝑁𝑆 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ( 𝑁𝑆 ) ≤ 𝑁 ) )
98 96 97 sylibr ( 𝑆 ∈ ( 1 ..^ 𝑁 ) → 𝑁 ∈ ( ℤ ‘ ( 𝑁𝑆 ) ) )
99 fzoss2 ( 𝑁 ∈ ( ℤ ‘ ( 𝑁𝑆 ) ) → ( 0 ..^ ( 𝑁𝑆 ) ) ⊆ ( 0 ..^ 𝑁 ) )
100 1 98 99 3syl ( 𝜑 → ( 0 ..^ ( 𝑁𝑆 ) ) ⊆ ( 0 ..^ 𝑁 ) )
101 100 sselda ( ( 𝜑𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) ) → 𝑗 ∈ ( 0 ..^ 𝑁 ) )
102 4 oveq2i ( 0 ..^ 𝑁 ) = ( 0 ..^ ( ♯ ‘ 𝐹 ) )
103 101 102 eleqtrdi ( ( 𝜑𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) ) → 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )
104 cshwidxmod ( ( 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐹 cyclShift 𝑆 ) ‘ 𝑗 ) = ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) )
105 81 83 103 104 syl3anc ( ( 𝜑𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) ) → ( ( 𝐹 cyclShift 𝑆 ) ‘ 𝑗 ) = ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) )
106 4 eqcomi ( ♯ ‘ 𝐹 ) = 𝑁
107 106 oveq2i ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) = ( ( 𝑗 + 𝑆 ) mod 𝑁 )
108 21 imp ( ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) ) → ( 𝑗 + 𝑆 ) ∈ ℕ0 )
109 nnm1nn0 ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ℕ0 )
110 109 3ad2ant2 ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → ( 𝑁 − 1 ) ∈ ℕ0 )
111 110 adantr ( ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) ) → ( 𝑁 − 1 ) ∈ ℕ0 )
112 31 35 anim12i ( ( 𝑗 ∈ ℕ0 ∧ ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ) → ( 𝑗 ∈ ℝ ∧ ( 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) )
113 112 38 sylibr ( ( 𝑗 ∈ ℕ0 ∧ ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ) → ( 𝑗 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) )
114 113 41 syl ( ( 𝑗 ∈ ℕ0 ∧ ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ) → ( 𝑗 < ( 𝑁𝑆 ) ↔ ( 𝑗 + 𝑆 ) < 𝑁 ) )
115 17 3ad2ant1 ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → 𝑆 ∈ ℕ0 )
116 115 18 sylan2 ( ( 𝑗 ∈ ℕ0 ∧ ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ) → ( 𝑗 + 𝑆 ) ∈ ℕ0 )
117 116 nn0zd ( ( 𝑗 ∈ ℕ0 ∧ ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ) → ( 𝑗 + 𝑆 ) ∈ ℤ )
118 84 3ad2ant2 ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → 𝑁 ∈ ℤ )
119 118 adantl ( ( 𝑗 ∈ ℕ0 ∧ ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ) → 𝑁 ∈ ℤ )
120 zltlem1 ( ( ( 𝑗 + 𝑆 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑗 + 𝑆 ) < 𝑁 ↔ ( 𝑗 + 𝑆 ) ≤ ( 𝑁 − 1 ) ) )
121 117 119 120 syl2anc ( ( 𝑗 ∈ ℕ0 ∧ ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ) → ( ( 𝑗 + 𝑆 ) < 𝑁 ↔ ( 𝑗 + 𝑆 ) ≤ ( 𝑁 − 1 ) ) )
122 121 biimpd ( ( 𝑗 ∈ ℕ0 ∧ ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ) → ( ( 𝑗 + 𝑆 ) < 𝑁 → ( 𝑗 + 𝑆 ) ≤ ( 𝑁 − 1 ) ) )
123 114 122 sylbid ( ( 𝑗 ∈ ℕ0 ∧ ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ) → ( 𝑗 < ( 𝑁𝑆 ) → ( 𝑗 + 𝑆 ) ≤ ( 𝑁 − 1 ) ) )
124 123 impancom ( ( 𝑗 ∈ ℕ0𝑗 < ( 𝑁𝑆 ) ) → ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → ( 𝑗 + 𝑆 ) ≤ ( 𝑁 − 1 ) ) )
125 124 3adant2 ( ( 𝑗 ∈ ℕ0 ∧ ( 𝑁𝑆 ) ∈ ℕ ∧ 𝑗 < ( 𝑁𝑆 ) ) → ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → ( 𝑗 + 𝑆 ) ≤ ( 𝑁 − 1 ) ) )
126 30 125 sylbi ( 𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) → ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → ( 𝑗 + 𝑆 ) ≤ ( 𝑁 − 1 ) ) )
127 126 impcom ( ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) ) → ( 𝑗 + 𝑆 ) ≤ ( 𝑁 − 1 ) )
128 108 111 127 3jca ( ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) ) → ( ( 𝑗 + 𝑆 ) ∈ ℕ0 ∧ ( 𝑁 − 1 ) ∈ ℕ0 ∧ ( 𝑗 + 𝑆 ) ≤ ( 𝑁 − 1 ) ) )
129 15 128 sylanb ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) ) → ( ( 𝑗 + 𝑆 ) ∈ ℕ0 ∧ ( 𝑁 − 1 ) ∈ ℕ0 ∧ ( 𝑗 + 𝑆 ) ≤ ( 𝑁 − 1 ) ) )
130 elfz2nn0 ( ( 𝑗 + 𝑆 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ↔ ( ( 𝑗 + 𝑆 ) ∈ ℕ0 ∧ ( 𝑁 − 1 ) ∈ ℕ0 ∧ ( 𝑗 + 𝑆 ) ≤ ( 𝑁 − 1 ) ) )
131 129 130 sylibr ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) ) → ( 𝑗 + 𝑆 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) )
132 zaddcl ( ( 𝑗 ∈ ℤ ∧ 𝑆 ∈ ℤ ) → ( 𝑗 + 𝑆 ) ∈ ℤ )
133 7 10 132 syl2anr ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) ) → ( 𝑗 + 𝑆 ) ∈ ℤ )
134 zmodid2 ( ( ( 𝑗 + 𝑆 ) ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝑗 + 𝑆 ) mod 𝑁 ) = ( 𝑗 + 𝑆 ) ↔ ( 𝑗 + 𝑆 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ) )
135 133 29 134 syl2anc ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) ) → ( ( ( 𝑗 + 𝑆 ) mod 𝑁 ) = ( 𝑗 + 𝑆 ) ↔ ( 𝑗 + 𝑆 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ) )
136 131 135 mpbird ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) ) → ( ( 𝑗 + 𝑆 ) mod 𝑁 ) = ( 𝑗 + 𝑆 ) )
137 1 136 sylan ( ( 𝜑𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) ) → ( ( 𝑗 + 𝑆 ) mod 𝑁 ) = ( 𝑗 + 𝑆 ) )
138 107 137 syl5eq ( ( 𝜑𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) ) → ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) = ( 𝑗 + 𝑆 ) )
139 138 fveq2d ( ( 𝜑𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) ) → ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) = ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) )
140 105 139 eqtrd ( ( 𝜑𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) ) → ( ( 𝐹 cyclShift 𝑆 ) ‘ 𝑗 ) = ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) )
141 80 140 syl5eq ( ( 𝜑𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) ) → ( 𝐻𝑗 ) = ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) )
142 141 fveq2d ( ( 𝜑𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) ) → ( 𝐼 ‘ ( 𝐻𝑗 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) )
143 simp1 ( ( ( 𝑄𝑗 ) = ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) ∧ ( 𝑄 ‘ ( 𝑗 + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ ( 𝐼 ‘ ( 𝐻𝑗 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) → ( 𝑄𝑗 ) = ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) )
144 simp2 ( ( ( 𝑄𝑗 ) = ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) ∧ ( 𝑄 ‘ ( 𝑗 + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ ( 𝐼 ‘ ( 𝐻𝑗 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) → ( 𝑄 ‘ ( 𝑗 + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) )
145 143 144 eqeq12d ( ( ( 𝑄𝑗 ) = ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) ∧ ( 𝑄 ‘ ( 𝑗 + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ ( 𝐼 ‘ ( 𝐻𝑗 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) → ( ( 𝑄𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ↔ ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ) )
146 simp3 ( ( ( 𝑄𝑗 ) = ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) ∧ ( 𝑄 ‘ ( 𝑗 + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ ( 𝐼 ‘ ( 𝐻𝑗 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) → ( 𝐼 ‘ ( 𝐻𝑗 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) )
147 143 sneqd ( ( ( 𝑄𝑗 ) = ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) ∧ ( 𝑄 ‘ ( 𝑗 + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ ( 𝐼 ‘ ( 𝐻𝑗 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) → { ( 𝑄𝑗 ) } = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) } )
148 146 147 eqeq12d ( ( ( 𝑄𝑗 ) = ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) ∧ ( 𝑄 ‘ ( 𝑗 + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ ( 𝐼 ‘ ( 𝐻𝑗 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) → ( ( 𝐼 ‘ ( 𝐻𝑗 ) ) = { ( 𝑄𝑗 ) } ↔ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) } ) )
149 143 144 preq12d ( ( ( 𝑄𝑗 ) = ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) ∧ ( 𝑄 ‘ ( 𝑗 + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ ( 𝐼 ‘ ( 𝐻𝑗 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) → { ( 𝑄𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) } )
150 149 146 sseq12d ( ( ( 𝑄𝑗 ) = ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) ∧ ( 𝑄 ‘ ( 𝑗 + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ ( 𝐼 ‘ ( 𝐻𝑗 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) → ( { ( 𝑄𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻𝑗 ) ) ↔ { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) )
151 145 148 150 ifpbi123d ( ( ( 𝑄𝑗 ) = ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) ∧ ( 𝑄 ‘ ( 𝑗 + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ ( 𝐼 ‘ ( 𝐻𝑗 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) → ( if- ( ( 𝑄𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻𝑗 ) ) = { ( 𝑄𝑗 ) } , { ( 𝑄𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻𝑗 ) ) ) ↔ if- ( ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) } , { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) ) )
152 76 79 142 151 syl3anc ( ( 𝜑𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) ) → ( if- ( ( 𝑄𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻𝑗 ) ) = { ( 𝑄𝑗 ) } , { ( 𝑄𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻𝑗 ) ) ) ↔ if- ( ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) } , { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) ) )
153 73 152 mpbird ( ( 𝜑𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) ) → if- ( ( 𝑄𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻𝑗 ) ) = { ( 𝑄𝑗 ) } , { ( 𝑄𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻𝑗 ) ) ) )
154 153 ralrimiva ( 𝜑 → ∀ 𝑗 ∈ ( 0 ..^ ( 𝑁𝑆 ) ) if- ( ( 𝑄𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻𝑗 ) ) = { ( 𝑄𝑗 ) } , { ( 𝑄𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻𝑗 ) ) ) )