| Step |
Hyp |
Ref |
Expression |
| 1 |
|
crctcshwlkn0lem.s |
⊢ ( 𝜑 → 𝑆 ∈ ( 1 ..^ 𝑁 ) ) |
| 2 |
|
crctcshwlkn0lem.q |
⊢ 𝑄 = ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ if ( 𝑥 ≤ ( 𝑁 − 𝑆 ) , ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) ) |
| 3 |
|
crctcshwlkn0lem.h |
⊢ 𝐻 = ( 𝐹 cyclShift 𝑆 ) |
| 4 |
|
crctcshwlkn0lem.n |
⊢ 𝑁 = ( ♯ ‘ 𝐹 ) |
| 5 |
|
crctcshwlkn0lem.f |
⊢ ( 𝜑 → 𝐹 ∈ Word 𝐴 ) |
| 6 |
|
crctcshwlkn0lem.p |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) |
| 7 |
|
elfzoelz |
⊢ ( 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) → 𝑗 ∈ ℤ ) |
| 8 |
7
|
zcnd |
⊢ ( 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) → 𝑗 ∈ ℂ ) |
| 9 |
8
|
adantl |
⊢ ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → 𝑗 ∈ ℂ ) |
| 10 |
|
elfzoelz |
⊢ ( 𝑆 ∈ ( 1 ..^ 𝑁 ) → 𝑆 ∈ ℤ ) |
| 11 |
10
|
zcnd |
⊢ ( 𝑆 ∈ ( 1 ..^ 𝑁 ) → 𝑆 ∈ ℂ ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → 𝑆 ∈ ℂ ) |
| 13 |
|
1cnd |
⊢ ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → 1 ∈ ℂ ) |
| 14 |
9 12 13
|
add32d |
⊢ ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( ( 𝑗 + 𝑆 ) + 1 ) = ( ( 𝑗 + 1 ) + 𝑆 ) ) |
| 15 |
|
elfzo1 |
⊢ ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ↔ ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ) |
| 16 |
|
elfzonn0 |
⊢ ( 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) → 𝑗 ∈ ℕ0 ) |
| 17 |
|
nnnn0 |
⊢ ( 𝑆 ∈ ℕ → 𝑆 ∈ ℕ0 ) |
| 18 |
|
nn0addcl |
⊢ ( ( 𝑗 ∈ ℕ0 ∧ 𝑆 ∈ ℕ0 ) → ( 𝑗 + 𝑆 ) ∈ ℕ0 ) |
| 19 |
18
|
ex |
⊢ ( 𝑗 ∈ ℕ0 → ( 𝑆 ∈ ℕ0 → ( 𝑗 + 𝑆 ) ∈ ℕ0 ) ) |
| 20 |
16 17 19
|
syl2imc |
⊢ ( 𝑆 ∈ ℕ → ( 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) → ( 𝑗 + 𝑆 ) ∈ ℕ0 ) ) |
| 21 |
20
|
3ad2ant1 |
⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → ( 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) → ( 𝑗 + 𝑆 ) ∈ ℕ0 ) ) |
| 22 |
15 21
|
sylbi |
⊢ ( 𝑆 ∈ ( 1 ..^ 𝑁 ) → ( 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) → ( 𝑗 + 𝑆 ) ∈ ℕ0 ) ) |
| 23 |
22
|
imp |
⊢ ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( 𝑗 + 𝑆 ) ∈ ℕ0 ) |
| 24 |
|
fzo0ss1 |
⊢ ( 1 ..^ 𝑁 ) ⊆ ( 0 ..^ 𝑁 ) |
| 25 |
24
|
sseli |
⊢ ( 𝑆 ∈ ( 1 ..^ 𝑁 ) → 𝑆 ∈ ( 0 ..^ 𝑁 ) ) |
| 26 |
|
elfzo0 |
⊢ ( 𝑆 ∈ ( 0 ..^ 𝑁 ) ↔ ( 𝑆 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ) |
| 27 |
26
|
simp2bi |
⊢ ( 𝑆 ∈ ( 0 ..^ 𝑁 ) → 𝑁 ∈ ℕ ) |
| 28 |
25 27
|
syl |
⊢ ( 𝑆 ∈ ( 1 ..^ 𝑁 ) → 𝑁 ∈ ℕ ) |
| 29 |
28
|
adantr |
⊢ ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → 𝑁 ∈ ℕ ) |
| 30 |
|
elfzo0 |
⊢ ( 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ↔ ( 𝑗 ∈ ℕ0 ∧ ( 𝑁 − 𝑆 ) ∈ ℕ ∧ 𝑗 < ( 𝑁 − 𝑆 ) ) ) |
| 31 |
|
nn0re |
⊢ ( 𝑗 ∈ ℕ0 → 𝑗 ∈ ℝ ) |
| 32 |
|
nnre |
⊢ ( 𝑆 ∈ ℕ → 𝑆 ∈ ℝ ) |
| 33 |
|
nnre |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) |
| 34 |
32 33
|
anim12i |
⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
| 35 |
34
|
3adant3 |
⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → ( 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
| 36 |
15 35
|
sylbi |
⊢ ( 𝑆 ∈ ( 1 ..^ 𝑁 ) → ( 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
| 37 |
31 36
|
anim12i |
⊢ ( ( 𝑗 ∈ ℕ0 ∧ 𝑆 ∈ ( 1 ..^ 𝑁 ) ) → ( 𝑗 ∈ ℝ ∧ ( 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) ) |
| 38 |
|
3anass |
⊢ ( ( 𝑗 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ↔ ( 𝑗 ∈ ℝ ∧ ( 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) ) |
| 39 |
37 38
|
sylibr |
⊢ ( ( 𝑗 ∈ ℕ0 ∧ 𝑆 ∈ ( 1 ..^ 𝑁 ) ) → ( 𝑗 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
| 40 |
|
ltaddsub |
⊢ ( ( 𝑗 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( 𝑗 + 𝑆 ) < 𝑁 ↔ 𝑗 < ( 𝑁 − 𝑆 ) ) ) |
| 41 |
40
|
bicomd |
⊢ ( ( 𝑗 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑗 < ( 𝑁 − 𝑆 ) ↔ ( 𝑗 + 𝑆 ) < 𝑁 ) ) |
| 42 |
39 41
|
syl |
⊢ ( ( 𝑗 ∈ ℕ0 ∧ 𝑆 ∈ ( 1 ..^ 𝑁 ) ) → ( 𝑗 < ( 𝑁 − 𝑆 ) ↔ ( 𝑗 + 𝑆 ) < 𝑁 ) ) |
| 43 |
42
|
biimpd |
⊢ ( ( 𝑗 ∈ ℕ0 ∧ 𝑆 ∈ ( 1 ..^ 𝑁 ) ) → ( 𝑗 < ( 𝑁 − 𝑆 ) → ( 𝑗 + 𝑆 ) < 𝑁 ) ) |
| 44 |
43
|
ex |
⊢ ( 𝑗 ∈ ℕ0 → ( 𝑆 ∈ ( 1 ..^ 𝑁 ) → ( 𝑗 < ( 𝑁 − 𝑆 ) → ( 𝑗 + 𝑆 ) < 𝑁 ) ) ) |
| 45 |
44
|
com23 |
⊢ ( 𝑗 ∈ ℕ0 → ( 𝑗 < ( 𝑁 − 𝑆 ) → ( 𝑆 ∈ ( 1 ..^ 𝑁 ) → ( 𝑗 + 𝑆 ) < 𝑁 ) ) ) |
| 46 |
45
|
a1d |
⊢ ( 𝑗 ∈ ℕ0 → ( ( 𝑁 − 𝑆 ) ∈ ℕ → ( 𝑗 < ( 𝑁 − 𝑆 ) → ( 𝑆 ∈ ( 1 ..^ 𝑁 ) → ( 𝑗 + 𝑆 ) < 𝑁 ) ) ) ) |
| 47 |
46
|
3imp |
⊢ ( ( 𝑗 ∈ ℕ0 ∧ ( 𝑁 − 𝑆 ) ∈ ℕ ∧ 𝑗 < ( 𝑁 − 𝑆 ) ) → ( 𝑆 ∈ ( 1 ..^ 𝑁 ) → ( 𝑗 + 𝑆 ) < 𝑁 ) ) |
| 48 |
30 47
|
sylbi |
⊢ ( 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) → ( 𝑆 ∈ ( 1 ..^ 𝑁 ) → ( 𝑗 + 𝑆 ) < 𝑁 ) ) |
| 49 |
48
|
impcom |
⊢ ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( 𝑗 + 𝑆 ) < 𝑁 ) |
| 50 |
|
elfzo0 |
⊢ ( ( 𝑗 + 𝑆 ) ∈ ( 0 ..^ 𝑁 ) ↔ ( ( 𝑗 + 𝑆 ) ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ ( 𝑗 + 𝑆 ) < 𝑁 ) ) |
| 51 |
23 29 49 50
|
syl3anbrc |
⊢ ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( 𝑗 + 𝑆 ) ∈ ( 0 ..^ 𝑁 ) ) |
| 52 |
51
|
adantr |
⊢ ( ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) ∧ ( ( 𝑗 + 𝑆 ) + 1 ) = ( ( 𝑗 + 1 ) + 𝑆 ) ) → ( 𝑗 + 𝑆 ) ∈ ( 0 ..^ 𝑁 ) ) |
| 53 |
|
fveq2 |
⊢ ( 𝑖 = ( 𝑗 + 𝑆 ) → ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) ) |
| 54 |
53
|
adantl |
⊢ ( ( ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) ∧ ( ( 𝑗 + 𝑆 ) + 1 ) = ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ 𝑖 = ( 𝑗 + 𝑆 ) ) → ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) ) |
| 55 |
|
fvoveq1 |
⊢ ( 𝑖 = ( 𝑗 + 𝑆 ) → ( 𝑃 ‘ ( 𝑖 + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 𝑆 ) + 1 ) ) ) |
| 56 |
|
simpr |
⊢ ( ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) ∧ ( ( 𝑗 + 𝑆 ) + 1 ) = ( ( 𝑗 + 1 ) + 𝑆 ) ) → ( ( 𝑗 + 𝑆 ) + 1 ) = ( ( 𝑗 + 1 ) + 𝑆 ) ) |
| 57 |
56
|
fveq2d |
⊢ ( ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) ∧ ( ( 𝑗 + 𝑆 ) + 1 ) = ( ( 𝑗 + 1 ) + 𝑆 ) ) → ( 𝑃 ‘ ( ( 𝑗 + 𝑆 ) + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ) |
| 58 |
55 57
|
sylan9eqr |
⊢ ( ( ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) ∧ ( ( 𝑗 + 𝑆 ) + 1 ) = ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ 𝑖 = ( 𝑗 + 𝑆 ) ) → ( 𝑃 ‘ ( 𝑖 + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ) |
| 59 |
54 58
|
eqeq12d |
⊢ ( ( ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) ∧ ( ( 𝑗 + 𝑆 ) + 1 ) = ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ 𝑖 = ( 𝑗 + 𝑆 ) ) → ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) ↔ ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ) ) |
| 60 |
|
2fveq3 |
⊢ ( 𝑖 = ( 𝑗 + 𝑆 ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) |
| 61 |
53
|
sneqd |
⊢ ( 𝑖 = ( 𝑗 + 𝑆 ) → { ( 𝑃 ‘ 𝑖 ) } = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) } ) |
| 62 |
60 61
|
eqeq12d |
⊢ ( 𝑖 = ( 𝑗 + 𝑆 ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } ↔ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) } ) ) |
| 63 |
62
|
adantl |
⊢ ( ( ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) ∧ ( ( 𝑗 + 𝑆 ) + 1 ) = ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ 𝑖 = ( 𝑗 + 𝑆 ) ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } ↔ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) } ) ) |
| 64 |
54 58
|
preq12d |
⊢ ( ( ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) ∧ ( ( 𝑗 + 𝑆 ) + 1 ) = ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ 𝑖 = ( 𝑗 + 𝑆 ) ) → { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) } ) |
| 65 |
60
|
adantl |
⊢ ( ( ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) ∧ ( ( 𝑗 + 𝑆 ) + 1 ) = ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ 𝑖 = ( 𝑗 + 𝑆 ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) |
| 66 |
64 65
|
sseq12d |
⊢ ( ( ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) ∧ ( ( 𝑗 + 𝑆 ) + 1 ) = ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ 𝑖 = ( 𝑗 + 𝑆 ) ) → ( { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ↔ { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) ) |
| 67 |
59 63 66
|
ifpbi123d |
⊢ ( ( ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) ∧ ( ( 𝑗 + 𝑆 ) + 1 ) = ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ 𝑖 = ( 𝑗 + 𝑆 ) ) → ( if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ↔ if- ( ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) } , { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) ) ) |
| 68 |
52 67
|
rspcdv |
⊢ ( ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) ∧ ( ( 𝑗 + 𝑆 ) + 1 ) = ( ( 𝑗 + 1 ) + 𝑆 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) → if- ( ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) } , { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) ) ) |
| 69 |
14 68
|
mpdan |
⊢ ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) → if- ( ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) } , { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) ) ) |
| 70 |
1 69
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) → if- ( ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) } , { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) ) ) |
| 71 |
70
|
ex |
⊢ ( 𝜑 → ( 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) → if- ( ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) } , { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) ) ) ) |
| 72 |
6 71
|
mpid |
⊢ ( 𝜑 → ( 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) → if- ( ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) } , { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) ) ) |
| 73 |
72
|
imp |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → if- ( ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) } , { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) ) |
| 74 |
|
elfzofz |
⊢ ( 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) → 𝑗 ∈ ( 0 ... ( 𝑁 − 𝑆 ) ) ) |
| 75 |
1 2
|
crctcshwlkn0lem2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 𝑆 ) ) ) → ( 𝑄 ‘ 𝑗 ) = ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) ) |
| 76 |
74 75
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( 𝑄 ‘ 𝑗 ) = ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) ) |
| 77 |
|
fzofzp1 |
⊢ ( 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) → ( 𝑗 + 1 ) ∈ ( 0 ... ( 𝑁 − 𝑆 ) ) ) |
| 78 |
1 2
|
crctcshwlkn0lem2 |
⊢ ( ( 𝜑 ∧ ( 𝑗 + 1 ) ∈ ( 0 ... ( 𝑁 − 𝑆 ) ) ) → ( 𝑄 ‘ ( 𝑗 + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ) |
| 79 |
77 78
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( 𝑄 ‘ ( 𝑗 + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ) |
| 80 |
3
|
fveq1i |
⊢ ( 𝐻 ‘ 𝑗 ) = ( ( 𝐹 cyclShift 𝑆 ) ‘ 𝑗 ) |
| 81 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → 𝐹 ∈ Word 𝐴 ) |
| 82 |
1 10
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ ℤ ) |
| 83 |
82
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → 𝑆 ∈ ℤ ) |
| 84 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
| 85 |
84
|
adantl |
⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℤ ) |
| 86 |
|
nnz |
⊢ ( 𝑆 ∈ ℕ → 𝑆 ∈ ℤ ) |
| 87 |
86
|
adantr |
⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑆 ∈ ℤ ) |
| 88 |
85 87
|
zsubcld |
⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 − 𝑆 ) ∈ ℤ ) |
| 89 |
17
|
nn0ge0d |
⊢ ( 𝑆 ∈ ℕ → 0 ≤ 𝑆 ) |
| 90 |
89
|
adantr |
⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 0 ≤ 𝑆 ) |
| 91 |
|
subge02 |
⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑆 ∈ ℝ ) → ( 0 ≤ 𝑆 ↔ ( 𝑁 − 𝑆 ) ≤ 𝑁 ) ) |
| 92 |
33 32 91
|
syl2anr |
⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 0 ≤ 𝑆 ↔ ( 𝑁 − 𝑆 ) ≤ 𝑁 ) ) |
| 93 |
90 92
|
mpbid |
⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 − 𝑆 ) ≤ 𝑁 ) |
| 94 |
88 85 93
|
3jca |
⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑁 − 𝑆 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ( 𝑁 − 𝑆 ) ≤ 𝑁 ) ) |
| 95 |
94
|
3adant3 |
⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → ( ( 𝑁 − 𝑆 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ( 𝑁 − 𝑆 ) ≤ 𝑁 ) ) |
| 96 |
15 95
|
sylbi |
⊢ ( 𝑆 ∈ ( 1 ..^ 𝑁 ) → ( ( 𝑁 − 𝑆 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ( 𝑁 − 𝑆 ) ≤ 𝑁 ) ) |
| 97 |
|
eluz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑁 − 𝑆 ) ) ↔ ( ( 𝑁 − 𝑆 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ( 𝑁 − 𝑆 ) ≤ 𝑁 ) ) |
| 98 |
96 97
|
sylibr |
⊢ ( 𝑆 ∈ ( 1 ..^ 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑁 − 𝑆 ) ) ) |
| 99 |
|
fzoss2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑁 − 𝑆 ) ) → ( 0 ..^ ( 𝑁 − 𝑆 ) ) ⊆ ( 0 ..^ 𝑁 ) ) |
| 100 |
1 98 99
|
3syl |
⊢ ( 𝜑 → ( 0 ..^ ( 𝑁 − 𝑆 ) ) ⊆ ( 0 ..^ 𝑁 ) ) |
| 101 |
100
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → 𝑗 ∈ ( 0 ..^ 𝑁 ) ) |
| 102 |
4
|
oveq2i |
⊢ ( 0 ..^ 𝑁 ) = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) |
| 103 |
101 102
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 104 |
|
cshwidxmod |
⊢ ( ( 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐹 cyclShift 𝑆 ) ‘ 𝑗 ) = ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) |
| 105 |
81 83 103 104
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( ( 𝐹 cyclShift 𝑆 ) ‘ 𝑗 ) = ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) |
| 106 |
4
|
eqcomi |
⊢ ( ♯ ‘ 𝐹 ) = 𝑁 |
| 107 |
106
|
oveq2i |
⊢ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) = ( ( 𝑗 + 𝑆 ) mod 𝑁 ) |
| 108 |
21
|
imp |
⊢ ( ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( 𝑗 + 𝑆 ) ∈ ℕ0 ) |
| 109 |
|
nnm1nn0 |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ℕ0 ) |
| 110 |
109
|
3ad2ant2 |
⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → ( 𝑁 − 1 ) ∈ ℕ0 ) |
| 111 |
110
|
adantr |
⊢ ( ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( 𝑁 − 1 ) ∈ ℕ0 ) |
| 112 |
31 35
|
anim12i |
⊢ ( ( 𝑗 ∈ ℕ0 ∧ ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ) → ( 𝑗 ∈ ℝ ∧ ( 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) ) |
| 113 |
112 38
|
sylibr |
⊢ ( ( 𝑗 ∈ ℕ0 ∧ ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ) → ( 𝑗 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
| 114 |
113 41
|
syl |
⊢ ( ( 𝑗 ∈ ℕ0 ∧ ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ) → ( 𝑗 < ( 𝑁 − 𝑆 ) ↔ ( 𝑗 + 𝑆 ) < 𝑁 ) ) |
| 115 |
17
|
3ad2ant1 |
⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → 𝑆 ∈ ℕ0 ) |
| 116 |
115 18
|
sylan2 |
⊢ ( ( 𝑗 ∈ ℕ0 ∧ ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ) → ( 𝑗 + 𝑆 ) ∈ ℕ0 ) |
| 117 |
116
|
nn0zd |
⊢ ( ( 𝑗 ∈ ℕ0 ∧ ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ) → ( 𝑗 + 𝑆 ) ∈ ℤ ) |
| 118 |
84
|
3ad2ant2 |
⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → 𝑁 ∈ ℤ ) |
| 119 |
118
|
adantl |
⊢ ( ( 𝑗 ∈ ℕ0 ∧ ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ) → 𝑁 ∈ ℤ ) |
| 120 |
|
zltlem1 |
⊢ ( ( ( 𝑗 + 𝑆 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑗 + 𝑆 ) < 𝑁 ↔ ( 𝑗 + 𝑆 ) ≤ ( 𝑁 − 1 ) ) ) |
| 121 |
117 119 120
|
syl2anc |
⊢ ( ( 𝑗 ∈ ℕ0 ∧ ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ) → ( ( 𝑗 + 𝑆 ) < 𝑁 ↔ ( 𝑗 + 𝑆 ) ≤ ( 𝑁 − 1 ) ) ) |
| 122 |
121
|
biimpd |
⊢ ( ( 𝑗 ∈ ℕ0 ∧ ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ) → ( ( 𝑗 + 𝑆 ) < 𝑁 → ( 𝑗 + 𝑆 ) ≤ ( 𝑁 − 1 ) ) ) |
| 123 |
114 122
|
sylbid |
⊢ ( ( 𝑗 ∈ ℕ0 ∧ ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ) → ( 𝑗 < ( 𝑁 − 𝑆 ) → ( 𝑗 + 𝑆 ) ≤ ( 𝑁 − 1 ) ) ) |
| 124 |
123
|
impancom |
⊢ ( ( 𝑗 ∈ ℕ0 ∧ 𝑗 < ( 𝑁 − 𝑆 ) ) → ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → ( 𝑗 + 𝑆 ) ≤ ( 𝑁 − 1 ) ) ) |
| 125 |
124
|
3adant2 |
⊢ ( ( 𝑗 ∈ ℕ0 ∧ ( 𝑁 − 𝑆 ) ∈ ℕ ∧ 𝑗 < ( 𝑁 − 𝑆 ) ) → ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → ( 𝑗 + 𝑆 ) ≤ ( 𝑁 − 1 ) ) ) |
| 126 |
30 125
|
sylbi |
⊢ ( 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) → ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → ( 𝑗 + 𝑆 ) ≤ ( 𝑁 − 1 ) ) ) |
| 127 |
126
|
impcom |
⊢ ( ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( 𝑗 + 𝑆 ) ≤ ( 𝑁 − 1 ) ) |
| 128 |
108 111 127
|
3jca |
⊢ ( ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( ( 𝑗 + 𝑆 ) ∈ ℕ0 ∧ ( 𝑁 − 1 ) ∈ ℕ0 ∧ ( 𝑗 + 𝑆 ) ≤ ( 𝑁 − 1 ) ) ) |
| 129 |
15 128
|
sylanb |
⊢ ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( ( 𝑗 + 𝑆 ) ∈ ℕ0 ∧ ( 𝑁 − 1 ) ∈ ℕ0 ∧ ( 𝑗 + 𝑆 ) ≤ ( 𝑁 − 1 ) ) ) |
| 130 |
|
elfz2nn0 |
⊢ ( ( 𝑗 + 𝑆 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ↔ ( ( 𝑗 + 𝑆 ) ∈ ℕ0 ∧ ( 𝑁 − 1 ) ∈ ℕ0 ∧ ( 𝑗 + 𝑆 ) ≤ ( 𝑁 − 1 ) ) ) |
| 131 |
129 130
|
sylibr |
⊢ ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( 𝑗 + 𝑆 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
| 132 |
|
zaddcl |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑆 ∈ ℤ ) → ( 𝑗 + 𝑆 ) ∈ ℤ ) |
| 133 |
7 10 132
|
syl2anr |
⊢ ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( 𝑗 + 𝑆 ) ∈ ℤ ) |
| 134 |
|
zmodid2 |
⊢ ( ( ( 𝑗 + 𝑆 ) ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝑗 + 𝑆 ) mod 𝑁 ) = ( 𝑗 + 𝑆 ) ↔ ( 𝑗 + 𝑆 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ) |
| 135 |
133 29 134
|
syl2anc |
⊢ ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( ( ( 𝑗 + 𝑆 ) mod 𝑁 ) = ( 𝑗 + 𝑆 ) ↔ ( 𝑗 + 𝑆 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ) |
| 136 |
131 135
|
mpbird |
⊢ ( ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( ( 𝑗 + 𝑆 ) mod 𝑁 ) = ( 𝑗 + 𝑆 ) ) |
| 137 |
1 136
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( ( 𝑗 + 𝑆 ) mod 𝑁 ) = ( 𝑗 + 𝑆 ) ) |
| 138 |
107 137
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) = ( 𝑗 + 𝑆 ) ) |
| 139 |
138
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) = ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) |
| 140 |
105 139
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( ( 𝐹 cyclShift 𝑆 ) ‘ 𝑗 ) = ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) |
| 141 |
80 140
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( 𝐻 ‘ 𝑗 ) = ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) |
| 142 |
141
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) |
| 143 |
|
simp1 |
⊢ ( ( ( 𝑄 ‘ 𝑗 ) = ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) ∧ ( 𝑄 ‘ ( 𝑗 + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) → ( 𝑄 ‘ 𝑗 ) = ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) ) |
| 144 |
|
simp2 |
⊢ ( ( ( 𝑄 ‘ 𝑗 ) = ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) ∧ ( 𝑄 ‘ ( 𝑗 + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) → ( 𝑄 ‘ ( 𝑗 + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ) |
| 145 |
143 144
|
eqeq12d |
⊢ ( ( ( 𝑄 ‘ 𝑗 ) = ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) ∧ ( 𝑄 ‘ ( 𝑗 + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) → ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ↔ ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ) ) |
| 146 |
|
simp3 |
⊢ ( ( ( 𝑄 ‘ 𝑗 ) = ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) ∧ ( 𝑄 ‘ ( 𝑗 + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) → ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) |
| 147 |
143
|
sneqd |
⊢ ( ( ( 𝑄 ‘ 𝑗 ) = ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) ∧ ( 𝑄 ‘ ( 𝑗 + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) → { ( 𝑄 ‘ 𝑗 ) } = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) } ) |
| 148 |
146 147
|
eqeq12d |
⊢ ( ( ( 𝑄 ‘ 𝑗 ) = ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) ∧ ( 𝑄 ‘ ( 𝑗 + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) → ( ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } ↔ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) } ) ) |
| 149 |
143 144
|
preq12d |
⊢ ( ( ( 𝑄 ‘ 𝑗 ) = ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) ∧ ( 𝑄 ‘ ( 𝑗 + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) → { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) } ) |
| 150 |
149 146
|
sseq12d |
⊢ ( ( ( 𝑄 ‘ 𝑗 ) = ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) ∧ ( 𝑄 ‘ ( 𝑗 + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) → ( { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ↔ { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) ) |
| 151 |
145 148 150
|
ifpbi123d |
⊢ ( ( ( 𝑄 ‘ 𝑗 ) = ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) ∧ ( 𝑄 ‘ ( 𝑗 + 1 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) ∧ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) → ( if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ↔ if- ( ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) } , { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) ) ) |
| 152 |
76 79 142 151
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → ( if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ↔ if- ( ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) = ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) = { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) } , { ( 𝑃 ‘ ( 𝑗 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑗 + 1 ) + 𝑆 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑗 + 𝑆 ) ) ) ) ) ) |
| 153 |
73 152
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) ) → if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) |
| 154 |
153
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) |