| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvfsumleOLD.m | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 2 |  | dvfsumleOLD.a | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑀 [,] 𝑁 )  ↦  𝐴 )  ∈  ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) ) | 
						
							| 3 |  | dvfsumleOLD.v | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 (,) 𝑁 ) )  →  𝐵  ∈  𝑉 ) | 
						
							| 4 |  | dvfsumleOLD.b | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐴 ) )  =  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐵 ) ) | 
						
							| 5 |  | dvfsumleOLD.c | ⊢ ( 𝑥  =  𝑀  →  𝐴  =  𝐶 ) | 
						
							| 6 |  | dvfsumleOLD.d | ⊢ ( 𝑥  =  𝑁  →  𝐴  =  𝐷 ) | 
						
							| 7 |  | dvfsumleOLD.x | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  𝑋  ∈  ℝ ) | 
						
							| 8 |  | dvfsumleOLD.l | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( 𝑀 ..^ 𝑁 )  ∧  𝑥  ∈  ( 𝑘 (,) ( 𝑘  +  1 ) ) ) )  →  𝑋  ≤  𝐵 ) | 
						
							| 9 |  | fzofi | ⊢ ( 𝑀 ..^ 𝑁 )  ∈  Fin | 
						
							| 10 | 9 | a1i | ⊢ ( 𝜑  →  ( 𝑀 ..^ 𝑁 )  ∈  Fin ) | 
						
							| 11 |  | eluzel2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑀  ∈  ℤ ) | 
						
							| 12 | 1 11 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 13 |  | eluzelz | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑁  ∈  ℤ ) | 
						
							| 14 | 1 13 | syl | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 15 |  | fzval2 | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀 ... 𝑁 )  =  ( ( 𝑀 [,] 𝑁 )  ∩  ℤ ) ) | 
						
							| 16 | 12 14 15 | syl2anc | ⊢ ( 𝜑  →  ( 𝑀 ... 𝑁 )  =  ( ( 𝑀 [,] 𝑁 )  ∩  ℤ ) ) | 
						
							| 17 |  | inss1 | ⊢ ( ( 𝑀 [,] 𝑁 )  ∩  ℤ )  ⊆  ( 𝑀 [,] 𝑁 ) | 
						
							| 18 | 16 17 | eqsstrdi | ⊢ ( 𝜑  →  ( 𝑀 ... 𝑁 )  ⊆  ( 𝑀 [,] 𝑁 ) ) | 
						
							| 19 | 18 | sselda | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝑀 ... 𝑁 ) )  →  𝑦  ∈  ( 𝑀 [,] 𝑁 ) ) | 
						
							| 20 |  | cncff | ⊢ ( ( 𝑥  ∈  ( 𝑀 [,] 𝑁 )  ↦  𝐴 )  ∈  ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ )  →  ( 𝑥  ∈  ( 𝑀 [,] 𝑁 )  ↦  𝐴 ) : ( 𝑀 [,] 𝑁 ) ⟶ ℝ ) | 
						
							| 21 | 2 20 | syl | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑀 [,] 𝑁 )  ↦  𝐴 ) : ( 𝑀 [,] 𝑁 ) ⟶ ℝ ) | 
						
							| 22 |  | eqid | ⊢ ( 𝑥  ∈  ( 𝑀 [,] 𝑁 )  ↦  𝐴 )  =  ( 𝑥  ∈  ( 𝑀 [,] 𝑁 )  ↦  𝐴 ) | 
						
							| 23 | 22 | fmpt | ⊢ ( ∀ 𝑥  ∈  ( 𝑀 [,] 𝑁 ) 𝐴  ∈  ℝ  ↔  ( 𝑥  ∈  ( 𝑀 [,] 𝑁 )  ↦  𝐴 ) : ( 𝑀 [,] 𝑁 ) ⟶ ℝ ) | 
						
							| 24 | 21 23 | sylibr | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ( 𝑀 [,] 𝑁 ) 𝐴  ∈  ℝ ) | 
						
							| 25 |  | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦  /  𝑥 ⦌ 𝐴 | 
						
							| 26 | 25 | nfel1 | ⊢ Ⅎ 𝑥 ⦋ 𝑦  /  𝑥 ⦌ 𝐴  ∈  ℝ | 
						
							| 27 |  | csbeq1a | ⊢ ( 𝑥  =  𝑦  →  𝐴  =  ⦋ 𝑦  /  𝑥 ⦌ 𝐴 ) | 
						
							| 28 | 27 | eleq1d | ⊢ ( 𝑥  =  𝑦  →  ( 𝐴  ∈  ℝ  ↔  ⦋ 𝑦  /  𝑥 ⦌ 𝐴  ∈  ℝ ) ) | 
						
							| 29 | 26 28 | rspc | ⊢ ( 𝑦  ∈  ( 𝑀 [,] 𝑁 )  →  ( ∀ 𝑥  ∈  ( 𝑀 [,] 𝑁 ) 𝐴  ∈  ℝ  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐴  ∈  ℝ ) ) | 
						
							| 30 | 24 29 | mpan9 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝑀 [,] 𝑁 ) )  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐴  ∈  ℝ ) | 
						
							| 31 | 19 30 | syldan | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝑀 ... 𝑁 ) )  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐴  ∈  ℝ ) | 
						
							| 32 | 31 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  ( 𝑀 ... 𝑁 ) ⦋ 𝑦  /  𝑥 ⦌ 𝐴  ∈  ℝ ) | 
						
							| 33 |  | fzofzp1 | ⊢ ( 𝑘  ∈  ( 𝑀 ..^ 𝑁 )  →  ( 𝑘  +  1 )  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 34 |  | csbeq1 | ⊢ ( 𝑦  =  ( 𝑘  +  1 )  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐴  =  ⦋ ( 𝑘  +  1 )  /  𝑥 ⦌ 𝐴 ) | 
						
							| 35 | 34 | eleq1d | ⊢ ( 𝑦  =  ( 𝑘  +  1 )  →  ( ⦋ 𝑦  /  𝑥 ⦌ 𝐴  ∈  ℝ  ↔  ⦋ ( 𝑘  +  1 )  /  𝑥 ⦌ 𝐴  ∈  ℝ ) ) | 
						
							| 36 | 35 | rspccva | ⊢ ( ( ∀ 𝑦  ∈  ( 𝑀 ... 𝑁 ) ⦋ 𝑦  /  𝑥 ⦌ 𝐴  ∈  ℝ  ∧  ( 𝑘  +  1 )  ∈  ( 𝑀 ... 𝑁 ) )  →  ⦋ ( 𝑘  +  1 )  /  𝑥 ⦌ 𝐴  ∈  ℝ ) | 
						
							| 37 | 32 33 36 | syl2an | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ⦋ ( 𝑘  +  1 )  /  𝑥 ⦌ 𝐴  ∈  ℝ ) | 
						
							| 38 |  | elfzofz | ⊢ ( 𝑘  ∈  ( 𝑀 ..^ 𝑁 )  →  𝑘  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 39 |  | csbeq1 | ⊢ ( 𝑦  =  𝑘  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐴  =  ⦋ 𝑘  /  𝑥 ⦌ 𝐴 ) | 
						
							| 40 | 39 | eleq1d | ⊢ ( 𝑦  =  𝑘  →  ( ⦋ 𝑦  /  𝑥 ⦌ 𝐴  ∈  ℝ  ↔  ⦋ 𝑘  /  𝑥 ⦌ 𝐴  ∈  ℝ ) ) | 
						
							| 41 | 40 | rspccva | ⊢ ( ( ∀ 𝑦  ∈  ( 𝑀 ... 𝑁 ) ⦋ 𝑦  /  𝑥 ⦌ 𝐴  ∈  ℝ  ∧  𝑘  ∈  ( 𝑀 ... 𝑁 ) )  →  ⦋ 𝑘  /  𝑥 ⦌ 𝐴  ∈  ℝ ) | 
						
							| 42 | 32 38 41 | syl2an | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ⦋ 𝑘  /  𝑥 ⦌ 𝐴  ∈  ℝ ) | 
						
							| 43 | 37 42 | resubcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ⦋ ( 𝑘  +  1 )  /  𝑥 ⦌ 𝐴  −  ⦋ 𝑘  /  𝑥 ⦌ 𝐴 )  ∈  ℝ ) | 
						
							| 44 |  | elfzoelz | ⊢ ( 𝑘  ∈  ( 𝑀 ..^ 𝑁 )  →  𝑘  ∈  ℤ ) | 
						
							| 45 | 44 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  𝑘  ∈  ℤ ) | 
						
							| 46 | 45 | zred | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  𝑘  ∈  ℝ ) | 
						
							| 47 | 46 | recnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  𝑘  ∈  ℂ ) | 
						
							| 48 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 49 |  | pncan2 | ⊢ ( ( 𝑘  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝑘  +  1 )  −  𝑘 )  =  1 ) | 
						
							| 50 | 47 48 49 | sylancl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ( 𝑘  +  1 )  −  𝑘 )  =  1 ) | 
						
							| 51 | 50 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑋  ·  ( ( 𝑘  +  1 )  −  𝑘 ) )  =  ( 𝑋  ·  1 ) ) | 
						
							| 52 | 7 | recnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  𝑋  ∈  ℂ ) | 
						
							| 53 |  | peano2re | ⊢ ( 𝑘  ∈  ℝ  →  ( 𝑘  +  1 )  ∈  ℝ ) | 
						
							| 54 | 46 53 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑘  +  1 )  ∈  ℝ ) | 
						
							| 55 | 54 | recnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑘  +  1 )  ∈  ℂ ) | 
						
							| 56 | 52 55 47 | subdid | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑋  ·  ( ( 𝑘  +  1 )  −  𝑘 ) )  =  ( ( 𝑋  ·  ( 𝑘  +  1 ) )  −  ( 𝑋  ·  𝑘 ) ) ) | 
						
							| 57 | 52 | mulridd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑋  ·  1 )  =  𝑋 ) | 
						
							| 58 | 51 56 57 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ( 𝑋  ·  ( 𝑘  +  1 ) )  −  ( 𝑋  ·  𝑘 ) )  =  𝑋 ) | 
						
							| 59 |  | eqid | ⊢ ( TopOpen ‘ ℂfld )  =  ( TopOpen ‘ ℂfld ) | 
						
							| 60 | 59 | mulcn | ⊢  ·   ∈  ( ( ( TopOpen ‘ ℂfld )  ×t  ( TopOpen ‘ ℂfld ) )  Cn  ( TopOpen ‘ ℂfld ) ) | 
						
							| 61 | 12 | zred | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 62 | 61 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  𝑀  ∈  ℝ ) | 
						
							| 63 | 14 | zred | ⊢ ( 𝜑  →  𝑁  ∈  ℝ ) | 
						
							| 64 | 63 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  𝑁  ∈  ℝ ) | 
						
							| 65 |  | elfzole1 | ⊢ ( 𝑘  ∈  ( 𝑀 ..^ 𝑁 )  →  𝑀  ≤  𝑘 ) | 
						
							| 66 | 65 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  𝑀  ≤  𝑘 ) | 
						
							| 67 | 33 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑘  +  1 )  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 68 |  | elfzle2 | ⊢ ( ( 𝑘  +  1 )  ∈  ( 𝑀 ... 𝑁 )  →  ( 𝑘  +  1 )  ≤  𝑁 ) | 
						
							| 69 | 67 68 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑘  +  1 )  ≤  𝑁 ) | 
						
							| 70 |  | iccss | ⊢ ( ( ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ )  ∧  ( 𝑀  ≤  𝑘  ∧  ( 𝑘  +  1 )  ≤  𝑁 ) )  →  ( 𝑘 [,] ( 𝑘  +  1 ) )  ⊆  ( 𝑀 [,] 𝑁 ) ) | 
						
							| 71 | 62 64 66 69 70 | syl22anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑘 [,] ( 𝑘  +  1 ) )  ⊆  ( 𝑀 [,] 𝑁 ) ) | 
						
							| 72 |  | iccssre | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  ( 𝑀 [,] 𝑁 )  ⊆  ℝ ) | 
						
							| 73 | 61 63 72 | syl2anc | ⊢ ( 𝜑  →  ( 𝑀 [,] 𝑁 )  ⊆  ℝ ) | 
						
							| 74 | 73 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑀 [,] 𝑁 )  ⊆  ℝ ) | 
						
							| 75 | 71 74 | sstrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑘 [,] ( 𝑘  +  1 ) )  ⊆  ℝ ) | 
						
							| 76 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 77 | 75 76 | sstrdi | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑘 [,] ( 𝑘  +  1 ) )  ⊆  ℂ ) | 
						
							| 78 | 76 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ℝ  ⊆  ℂ ) | 
						
							| 79 |  | cncfmptc | ⊢ ( ( 𝑋  ∈  ℝ  ∧  ( 𝑘 [,] ( 𝑘  +  1 ) )  ⊆  ℂ  ∧  ℝ  ⊆  ℂ )  →  ( 𝑦  ∈  ( 𝑘 [,] ( 𝑘  +  1 ) )  ↦  𝑋 )  ∈  ( ( 𝑘 [,] ( 𝑘  +  1 ) ) –cn→ ℝ ) ) | 
						
							| 80 | 7 77 78 79 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑦  ∈  ( 𝑘 [,] ( 𝑘  +  1 ) )  ↦  𝑋 )  ∈  ( ( 𝑘 [,] ( 𝑘  +  1 ) ) –cn→ ℝ ) ) | 
						
							| 81 |  | cncfmptid | ⊢ ( ( ( 𝑘 [,] ( 𝑘  +  1 ) )  ⊆  ℝ  ∧  ℝ  ⊆  ℂ )  →  ( 𝑦  ∈  ( 𝑘 [,] ( 𝑘  +  1 ) )  ↦  𝑦 )  ∈  ( ( 𝑘 [,] ( 𝑘  +  1 ) ) –cn→ ℝ ) ) | 
						
							| 82 | 75 76 81 | sylancl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑦  ∈  ( 𝑘 [,] ( 𝑘  +  1 ) )  ↦  𝑦 )  ∈  ( ( 𝑘 [,] ( 𝑘  +  1 ) ) –cn→ ℝ ) ) | 
						
							| 83 |  | remulcl | ⊢ ( ( 𝑋  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( 𝑋  ·  𝑦 )  ∈  ℝ ) | 
						
							| 84 | 59 60 80 82 76 83 | cncfmpt2ss | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑦  ∈  ( 𝑘 [,] ( 𝑘  +  1 ) )  ↦  ( 𝑋  ·  𝑦 ) )  ∈  ( ( 𝑘 [,] ( 𝑘  +  1 ) ) –cn→ ℝ ) ) | 
						
							| 85 |  | reelprrecn | ⊢ ℝ  ∈  { ℝ ,  ℂ } | 
						
							| 86 | 85 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ℝ  ∈  { ℝ ,  ℂ } ) | 
						
							| 87 | 62 | rexrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  𝑀  ∈  ℝ* ) | 
						
							| 88 |  | iooss1 | ⊢ ( ( 𝑀  ∈  ℝ*  ∧  𝑀  ≤  𝑘 )  →  ( 𝑘 (,) ( 𝑘  +  1 ) )  ⊆  ( 𝑀 (,) ( 𝑘  +  1 ) ) ) | 
						
							| 89 | 87 66 88 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑘 (,) ( 𝑘  +  1 ) )  ⊆  ( 𝑀 (,) ( 𝑘  +  1 ) ) ) | 
						
							| 90 | 64 | rexrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  𝑁  ∈  ℝ* ) | 
						
							| 91 |  | iooss2 | ⊢ ( ( 𝑁  ∈  ℝ*  ∧  ( 𝑘  +  1 )  ≤  𝑁 )  →  ( 𝑀 (,) ( 𝑘  +  1 ) )  ⊆  ( 𝑀 (,) 𝑁 ) ) | 
						
							| 92 | 90 69 91 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑀 (,) ( 𝑘  +  1 ) )  ⊆  ( 𝑀 (,) 𝑁 ) ) | 
						
							| 93 | 89 92 | sstrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑘 (,) ( 𝑘  +  1 ) )  ⊆  ( 𝑀 (,) 𝑁 ) ) | 
						
							| 94 |  | ioossicc | ⊢ ( 𝑀 (,) 𝑁 )  ⊆  ( 𝑀 [,] 𝑁 ) | 
						
							| 95 | 74 76 | sstrdi | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑀 [,] 𝑁 )  ⊆  ℂ ) | 
						
							| 96 | 94 95 | sstrid | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑀 (,) 𝑁 )  ⊆  ℂ ) | 
						
							| 97 | 93 96 | sstrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑘 (,) ( 𝑘  +  1 ) )  ⊆  ℂ ) | 
						
							| 98 | 97 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  ∧  𝑦  ∈  ( 𝑘 (,) ( 𝑘  +  1 ) ) )  →  𝑦  ∈  ℂ ) | 
						
							| 99 |  | 1cnd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  ∧  𝑦  ∈  ( 𝑘 (,) ( 𝑘  +  1 ) ) )  →  1  ∈  ℂ ) | 
						
							| 100 | 78 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  ∧  𝑦  ∈  ℝ )  →  𝑦  ∈  ℂ ) | 
						
							| 101 |  | 1cnd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  ∧  𝑦  ∈  ℝ )  →  1  ∈  ℂ ) | 
						
							| 102 | 86 | dvmptid | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ℝ  D  ( 𝑦  ∈  ℝ  ↦  𝑦 ) )  =  ( 𝑦  ∈  ℝ  ↦  1 ) ) | 
						
							| 103 |  | ioossre | ⊢ ( 𝑘 (,) ( 𝑘  +  1 ) )  ⊆  ℝ | 
						
							| 104 | 103 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑘 (,) ( 𝑘  +  1 ) )  ⊆  ℝ ) | 
						
							| 105 | 59 | tgioo2 | ⊢ ( topGen ‘ ran  (,) )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) | 
						
							| 106 |  | iooretop | ⊢ ( 𝑘 (,) ( 𝑘  +  1 ) )  ∈  ( topGen ‘ ran  (,) ) | 
						
							| 107 | 106 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑘 (,) ( 𝑘  +  1 ) )  ∈  ( topGen ‘ ran  (,) ) ) | 
						
							| 108 | 86 100 101 102 104 105 59 107 | dvmptres | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ℝ  D  ( 𝑦  ∈  ( 𝑘 (,) ( 𝑘  +  1 ) )  ↦  𝑦 ) )  =  ( 𝑦  ∈  ( 𝑘 (,) ( 𝑘  +  1 ) )  ↦  1 ) ) | 
						
							| 109 | 86 98 99 108 52 | dvmptcmul | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ℝ  D  ( 𝑦  ∈  ( 𝑘 (,) ( 𝑘  +  1 ) )  ↦  ( 𝑋  ·  𝑦 ) ) )  =  ( 𝑦  ∈  ( 𝑘 (,) ( 𝑘  +  1 ) )  ↦  ( 𝑋  ·  1 ) ) ) | 
						
							| 110 | 57 | mpteq2dv | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑦  ∈  ( 𝑘 (,) ( 𝑘  +  1 ) )  ↦  ( 𝑋  ·  1 ) )  =  ( 𝑦  ∈  ( 𝑘 (,) ( 𝑘  +  1 ) )  ↦  𝑋 ) ) | 
						
							| 111 | 109 110 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ℝ  D  ( 𝑦  ∈  ( 𝑘 (,) ( 𝑘  +  1 ) )  ↦  ( 𝑋  ·  𝑦 ) ) )  =  ( 𝑦  ∈  ( 𝑘 (,) ( 𝑘  +  1 ) )  ↦  𝑋 ) ) | 
						
							| 112 |  | nfcv | ⊢ Ⅎ 𝑦 𝐴 | 
						
							| 113 | 112 25 27 | cbvmpt | ⊢ ( 𝑥  ∈  ( 𝑘 [,] ( 𝑘  +  1 ) )  ↦  𝐴 )  =  ( 𝑦  ∈  ( 𝑘 [,] ( 𝑘  +  1 ) )  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝐴 ) | 
						
							| 114 | 71 | resmptd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ( 𝑥  ∈  ( 𝑀 [,] 𝑁 )  ↦  𝐴 )  ↾  ( 𝑘 [,] ( 𝑘  +  1 ) ) )  =  ( 𝑥  ∈  ( 𝑘 [,] ( 𝑘  +  1 ) )  ↦  𝐴 ) ) | 
						
							| 115 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑥  ∈  ( 𝑀 [,] 𝑁 )  ↦  𝐴 )  ∈  ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) ) | 
						
							| 116 |  | rescncf | ⊢ ( ( 𝑘 [,] ( 𝑘  +  1 ) )  ⊆  ( 𝑀 [,] 𝑁 )  →  ( ( 𝑥  ∈  ( 𝑀 [,] 𝑁 )  ↦  𝐴 )  ∈  ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ )  →  ( ( 𝑥  ∈  ( 𝑀 [,] 𝑁 )  ↦  𝐴 )  ↾  ( 𝑘 [,] ( 𝑘  +  1 ) ) )  ∈  ( ( 𝑘 [,] ( 𝑘  +  1 ) ) –cn→ ℝ ) ) ) | 
						
							| 117 | 71 115 116 | sylc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ( 𝑥  ∈  ( 𝑀 [,] 𝑁 )  ↦  𝐴 )  ↾  ( 𝑘 [,] ( 𝑘  +  1 ) ) )  ∈  ( ( 𝑘 [,] ( 𝑘  +  1 ) ) –cn→ ℝ ) ) | 
						
							| 118 | 114 117 | eqeltrrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑥  ∈  ( 𝑘 [,] ( 𝑘  +  1 ) )  ↦  𝐴 )  ∈  ( ( 𝑘 [,] ( 𝑘  +  1 ) ) –cn→ ℝ ) ) | 
						
							| 119 | 113 118 | eqeltrrid | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑦  ∈  ( 𝑘 [,] ( 𝑘  +  1 ) )  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝐴 )  ∈  ( ( 𝑘 [,] ( 𝑘  +  1 ) ) –cn→ ℝ ) ) | 
						
							| 120 | 21 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑥  ∈  ( 𝑀 [,] 𝑁 )  ↦  𝐴 ) : ( 𝑀 [,] 𝑁 ) ⟶ ℝ ) | 
						
							| 121 | 120 23 | sylibr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ∀ 𝑥  ∈  ( 𝑀 [,] 𝑁 ) 𝐴  ∈  ℝ ) | 
						
							| 122 | 94 | sseli | ⊢ ( 𝑦  ∈  ( 𝑀 (,) 𝑁 )  →  𝑦  ∈  ( 𝑀 [,] 𝑁 ) ) | 
						
							| 123 | 29 | impcom | ⊢ ( ( ∀ 𝑥  ∈  ( 𝑀 [,] 𝑁 ) 𝐴  ∈  ℝ  ∧  𝑦  ∈  ( 𝑀 [,] 𝑁 ) )  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐴  ∈  ℝ ) | 
						
							| 124 | 121 122 123 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  ∧  𝑦  ∈  ( 𝑀 (,) 𝑁 ) )  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐴  ∈  ℝ ) | 
						
							| 125 | 124 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  ∧  𝑦  ∈  ( 𝑀 (,) 𝑁 ) )  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐴  ∈  ℂ ) | 
						
							| 126 | 94 | sseli | ⊢ ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  →  𝑥  ∈  ( 𝑀 [,] 𝑁 ) ) | 
						
							| 127 | 21 | fvmptelcdm | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 128 | 127 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 129 | 126 128 | sylan2 | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  ∧  𝑥  ∈  ( 𝑀 (,) 𝑁 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 130 | 129 | fmpttd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐴 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℝ ) | 
						
							| 131 |  | ioossre | ⊢ ( 𝑀 (,) 𝑁 )  ⊆  ℝ | 
						
							| 132 |  | dvfre | ⊢ ( ( ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐴 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℝ  ∧  ( 𝑀 (,) 𝑁 )  ⊆  ℝ )  →  ( ℝ  D  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐴 ) ) : dom  ( ℝ  D  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐴 ) ) ⟶ ℝ ) | 
						
							| 133 | 130 131 132 | sylancl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ℝ  D  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐴 ) ) : dom  ( ℝ  D  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐴 ) ) ⟶ ℝ ) | 
						
							| 134 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ℝ  D  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐴 ) )  =  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐵 ) ) | 
						
							| 135 | 134 | dmeqd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  dom  ( ℝ  D  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐴 ) )  =  dom  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐵 ) ) | 
						
							| 136 | 3 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  ∧  𝑥  ∈  ( 𝑀 (,) 𝑁 ) )  →  𝐵  ∈  𝑉 ) | 
						
							| 137 | 136 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ∀ 𝑥  ∈  ( 𝑀 (,) 𝑁 ) 𝐵  ∈  𝑉 ) | 
						
							| 138 |  | dmmptg | ⊢ ( ∀ 𝑥  ∈  ( 𝑀 (,) 𝑁 ) 𝐵  ∈  𝑉  →  dom  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐵 )  =  ( 𝑀 (,) 𝑁 ) ) | 
						
							| 139 | 137 138 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  dom  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐵 )  =  ( 𝑀 (,) 𝑁 ) ) | 
						
							| 140 | 135 139 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  dom  ( ℝ  D  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐴 ) )  =  ( 𝑀 (,) 𝑁 ) ) | 
						
							| 141 | 134 140 | feq12d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ( ℝ  D  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐴 ) ) : dom  ( ℝ  D  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐴 ) ) ⟶ ℝ  ↔  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐵 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℝ ) ) | 
						
							| 142 | 133 141 | mpbid | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐵 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℝ ) | 
						
							| 143 |  | eqid | ⊢ ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐵 )  =  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐵 ) | 
						
							| 144 | 143 | fmpt | ⊢ ( ∀ 𝑥  ∈  ( 𝑀 (,) 𝑁 ) 𝐵  ∈  ℝ  ↔  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐵 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℝ ) | 
						
							| 145 | 142 144 | sylibr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ∀ 𝑥  ∈  ( 𝑀 (,) 𝑁 ) 𝐵  ∈  ℝ ) | 
						
							| 146 |  | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦  /  𝑥 ⦌ 𝐵 | 
						
							| 147 | 146 | nfel1 | ⊢ Ⅎ 𝑥 ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ∈  ℝ | 
						
							| 148 |  | csbeq1a | ⊢ ( 𝑥  =  𝑦  →  𝐵  =  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ) | 
						
							| 149 | 148 | eleq1d | ⊢ ( 𝑥  =  𝑦  →  ( 𝐵  ∈  ℝ  ↔  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ∈  ℝ ) ) | 
						
							| 150 | 147 149 | rspc | ⊢ ( 𝑦  ∈  ( 𝑀 (,) 𝑁 )  →  ( ∀ 𝑥  ∈  ( 𝑀 (,) 𝑁 ) 𝐵  ∈  ℝ  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ∈  ℝ ) ) | 
						
							| 151 | 145 150 | mpan9 | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  ∧  𝑦  ∈  ( 𝑀 (,) 𝑁 ) )  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ∈  ℝ ) | 
						
							| 152 | 112 25 27 | cbvmpt | ⊢ ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐴 )  =  ( 𝑦  ∈  ( 𝑀 (,) 𝑁 )  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝐴 ) | 
						
							| 153 | 152 | oveq2i | ⊢ ( ℝ  D  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐴 ) )  =  ( ℝ  D  ( 𝑦  ∈  ( 𝑀 (,) 𝑁 )  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝐴 ) ) | 
						
							| 154 |  | nfcv | ⊢ Ⅎ 𝑦 𝐵 | 
						
							| 155 | 154 146 148 | cbvmpt | ⊢ ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐵 )  =  ( 𝑦  ∈  ( 𝑀 (,) 𝑁 )  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ) | 
						
							| 156 | 134 153 155 | 3eqtr3g | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ℝ  D  ( 𝑦  ∈  ( 𝑀 (,) 𝑁 )  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝐴 ) )  =  ( 𝑦  ∈  ( 𝑀 (,) 𝑁 )  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ) ) | 
						
							| 157 | 86 125 151 156 93 105 59 107 | dvmptres | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ℝ  D  ( 𝑦  ∈  ( 𝑘 (,) ( 𝑘  +  1 ) )  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝐴 ) )  =  ( 𝑦  ∈  ( 𝑘 (,) ( 𝑘  +  1 ) )  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ) ) | 
						
							| 158 | 8 | anassrs | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  ∧  𝑥  ∈  ( 𝑘 (,) ( 𝑘  +  1 ) ) )  →  𝑋  ≤  𝐵 ) | 
						
							| 159 | 158 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ∀ 𝑥  ∈  ( 𝑘 (,) ( 𝑘  +  1 ) ) 𝑋  ≤  𝐵 ) | 
						
							| 160 |  | nfcv | ⊢ Ⅎ 𝑥 𝑋 | 
						
							| 161 |  | nfcv | ⊢ Ⅎ 𝑥  ≤ | 
						
							| 162 | 160 161 146 | nfbr | ⊢ Ⅎ 𝑥 𝑋  ≤  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 | 
						
							| 163 | 148 | breq2d | ⊢ ( 𝑥  =  𝑦  →  ( 𝑋  ≤  𝐵  ↔  𝑋  ≤  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ) ) | 
						
							| 164 | 162 163 | rspc | ⊢ ( 𝑦  ∈  ( 𝑘 (,) ( 𝑘  +  1 ) )  →  ( ∀ 𝑥  ∈  ( 𝑘 (,) ( 𝑘  +  1 ) ) 𝑋  ≤  𝐵  →  𝑋  ≤  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ) ) | 
						
							| 165 | 159 164 | mpan9 | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  ∧  𝑦  ∈  ( 𝑘 (,) ( 𝑘  +  1 ) ) )  →  𝑋  ≤  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ) | 
						
							| 166 | 46 | rexrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  𝑘  ∈  ℝ* ) | 
						
							| 167 | 54 | rexrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑘  +  1 )  ∈  ℝ* ) | 
						
							| 168 | 46 | lep1d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  𝑘  ≤  ( 𝑘  +  1 ) ) | 
						
							| 169 |  | lbicc2 | ⊢ ( ( 𝑘  ∈  ℝ*  ∧  ( 𝑘  +  1 )  ∈  ℝ*  ∧  𝑘  ≤  ( 𝑘  +  1 ) )  →  𝑘  ∈  ( 𝑘 [,] ( 𝑘  +  1 ) ) ) | 
						
							| 170 | 166 167 168 169 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  𝑘  ∈  ( 𝑘 [,] ( 𝑘  +  1 ) ) ) | 
						
							| 171 |  | ubicc2 | ⊢ ( ( 𝑘  ∈  ℝ*  ∧  ( 𝑘  +  1 )  ∈  ℝ*  ∧  𝑘  ≤  ( 𝑘  +  1 ) )  →  ( 𝑘  +  1 )  ∈  ( 𝑘 [,] ( 𝑘  +  1 ) ) ) | 
						
							| 172 | 166 167 168 171 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑘  +  1 )  ∈  ( 𝑘 [,] ( 𝑘  +  1 ) ) ) | 
						
							| 173 |  | oveq2 | ⊢ ( 𝑦  =  𝑘  →  ( 𝑋  ·  𝑦 )  =  ( 𝑋  ·  𝑘 ) ) | 
						
							| 174 |  | oveq2 | ⊢ ( 𝑦  =  ( 𝑘  +  1 )  →  ( 𝑋  ·  𝑦 )  =  ( 𝑋  ·  ( 𝑘  +  1 ) ) ) | 
						
							| 175 | 46 54 84 111 119 157 165 170 172 168 173 39 174 34 | dvle | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ( 𝑋  ·  ( 𝑘  +  1 ) )  −  ( 𝑋  ·  𝑘 ) )  ≤  ( ⦋ ( 𝑘  +  1 )  /  𝑥 ⦌ 𝐴  −  ⦋ 𝑘  /  𝑥 ⦌ 𝐴 ) ) | 
						
							| 176 | 58 175 | eqbrtrrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  𝑋  ≤  ( ⦋ ( 𝑘  +  1 )  /  𝑥 ⦌ 𝐴  −  ⦋ 𝑘  /  𝑥 ⦌ 𝐴 ) ) | 
						
							| 177 | 10 7 43 176 | fsumle | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 𝑀 ..^ 𝑁 ) 𝑋  ≤  Σ 𝑘  ∈  ( 𝑀 ..^ 𝑁 ) ( ⦋ ( 𝑘  +  1 )  /  𝑥 ⦌ 𝐴  −  ⦋ 𝑘  /  𝑥 ⦌ 𝐴 ) ) | 
						
							| 178 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 179 | 178 | a1i | ⊢ ( 𝑦  =  𝑀  →  𝑦  ∈  V ) | 
						
							| 180 |  | eqeq2 | ⊢ ( 𝑦  =  𝑀  →  ( 𝑥  =  𝑦  ↔  𝑥  =  𝑀 ) ) | 
						
							| 181 | 180 | biimpa | ⊢ ( ( 𝑦  =  𝑀  ∧  𝑥  =  𝑦 )  →  𝑥  =  𝑀 ) | 
						
							| 182 | 181 5 | syl | ⊢ ( ( 𝑦  =  𝑀  ∧  𝑥  =  𝑦 )  →  𝐴  =  𝐶 ) | 
						
							| 183 | 179 182 | csbied | ⊢ ( 𝑦  =  𝑀  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐴  =  𝐶 ) | 
						
							| 184 | 178 | a1i | ⊢ ( 𝑦  =  𝑁  →  𝑦  ∈  V ) | 
						
							| 185 |  | eqeq2 | ⊢ ( 𝑦  =  𝑁  →  ( 𝑥  =  𝑦  ↔  𝑥  =  𝑁 ) ) | 
						
							| 186 | 185 | biimpa | ⊢ ( ( 𝑦  =  𝑁  ∧  𝑥  =  𝑦 )  →  𝑥  =  𝑁 ) | 
						
							| 187 | 186 6 | syl | ⊢ ( ( 𝑦  =  𝑁  ∧  𝑥  =  𝑦 )  →  𝐴  =  𝐷 ) | 
						
							| 188 | 184 187 | csbied | ⊢ ( 𝑦  =  𝑁  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐴  =  𝐷 ) | 
						
							| 189 | 31 | recnd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝑀 ... 𝑁 ) )  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐴  ∈  ℂ ) | 
						
							| 190 | 39 34 183 188 1 189 | telfsumo2 | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 𝑀 ..^ 𝑁 ) ( ⦋ ( 𝑘  +  1 )  /  𝑥 ⦌ 𝐴  −  ⦋ 𝑘  /  𝑥 ⦌ 𝐴 )  =  ( 𝐷  −  𝐶 ) ) | 
						
							| 191 | 177 190 | breqtrd | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 𝑀 ..^ 𝑁 ) 𝑋  ≤  ( 𝐷  −  𝐶 ) ) |