| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvfsumleOLD.m |  |-  ( ph -> N e. ( ZZ>= ` M ) ) | 
						
							| 2 |  | dvfsumleOLD.a |  |-  ( ph -> ( x e. ( M [,] N ) |-> A ) e. ( ( M [,] N ) -cn-> RR ) ) | 
						
							| 3 |  | dvfsumleOLD.v |  |-  ( ( ph /\ x e. ( M (,) N ) ) -> B e. V ) | 
						
							| 4 |  | dvfsumleOLD.b |  |-  ( ph -> ( RR _D ( x e. ( M (,) N ) |-> A ) ) = ( x e. ( M (,) N ) |-> B ) ) | 
						
							| 5 |  | dvfsumleOLD.c |  |-  ( x = M -> A = C ) | 
						
							| 6 |  | dvfsumleOLD.d |  |-  ( x = N -> A = D ) | 
						
							| 7 |  | dvfsumleOLD.x |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> X e. RR ) | 
						
							| 8 |  | dvfsumleOLD.l |  |-  ( ( ph /\ ( k e. ( M ..^ N ) /\ x e. ( k (,) ( k + 1 ) ) ) ) -> X <_ B ) | 
						
							| 9 |  | fzofi |  |-  ( M ..^ N ) e. Fin | 
						
							| 10 | 9 | a1i |  |-  ( ph -> ( M ..^ N ) e. Fin ) | 
						
							| 11 |  | eluzel2 |  |-  ( N e. ( ZZ>= ` M ) -> M e. ZZ ) | 
						
							| 12 | 1 11 | syl |  |-  ( ph -> M e. ZZ ) | 
						
							| 13 |  | eluzelz |  |-  ( N e. ( ZZ>= ` M ) -> N e. ZZ ) | 
						
							| 14 | 1 13 | syl |  |-  ( ph -> N e. ZZ ) | 
						
							| 15 |  | fzval2 |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M ... N ) = ( ( M [,] N ) i^i ZZ ) ) | 
						
							| 16 | 12 14 15 | syl2anc |  |-  ( ph -> ( M ... N ) = ( ( M [,] N ) i^i ZZ ) ) | 
						
							| 17 |  | inss1 |  |-  ( ( M [,] N ) i^i ZZ ) C_ ( M [,] N ) | 
						
							| 18 | 16 17 | eqsstrdi |  |-  ( ph -> ( M ... N ) C_ ( M [,] N ) ) | 
						
							| 19 | 18 | sselda |  |-  ( ( ph /\ y e. ( M ... N ) ) -> y e. ( M [,] N ) ) | 
						
							| 20 |  | cncff |  |-  ( ( x e. ( M [,] N ) |-> A ) e. ( ( M [,] N ) -cn-> RR ) -> ( x e. ( M [,] N ) |-> A ) : ( M [,] N ) --> RR ) | 
						
							| 21 | 2 20 | syl |  |-  ( ph -> ( x e. ( M [,] N ) |-> A ) : ( M [,] N ) --> RR ) | 
						
							| 22 |  | eqid |  |-  ( x e. ( M [,] N ) |-> A ) = ( x e. ( M [,] N ) |-> A ) | 
						
							| 23 | 22 | fmpt |  |-  ( A. x e. ( M [,] N ) A e. RR <-> ( x e. ( M [,] N ) |-> A ) : ( M [,] N ) --> RR ) | 
						
							| 24 | 21 23 | sylibr |  |-  ( ph -> A. x e. ( M [,] N ) A e. RR ) | 
						
							| 25 |  | nfcsb1v |  |-  F/_ x [_ y / x ]_ A | 
						
							| 26 | 25 | nfel1 |  |-  F/ x [_ y / x ]_ A e. RR | 
						
							| 27 |  | csbeq1a |  |-  ( x = y -> A = [_ y / x ]_ A ) | 
						
							| 28 | 27 | eleq1d |  |-  ( x = y -> ( A e. RR <-> [_ y / x ]_ A e. RR ) ) | 
						
							| 29 | 26 28 | rspc |  |-  ( y e. ( M [,] N ) -> ( A. x e. ( M [,] N ) A e. RR -> [_ y / x ]_ A e. RR ) ) | 
						
							| 30 | 24 29 | mpan9 |  |-  ( ( ph /\ y e. ( M [,] N ) ) -> [_ y / x ]_ A e. RR ) | 
						
							| 31 | 19 30 | syldan |  |-  ( ( ph /\ y e. ( M ... N ) ) -> [_ y / x ]_ A e. RR ) | 
						
							| 32 | 31 | ralrimiva |  |-  ( ph -> A. y e. ( M ... N ) [_ y / x ]_ A e. RR ) | 
						
							| 33 |  | fzofzp1 |  |-  ( k e. ( M ..^ N ) -> ( k + 1 ) e. ( M ... N ) ) | 
						
							| 34 |  | csbeq1 |  |-  ( y = ( k + 1 ) -> [_ y / x ]_ A = [_ ( k + 1 ) / x ]_ A ) | 
						
							| 35 | 34 | eleq1d |  |-  ( y = ( k + 1 ) -> ( [_ y / x ]_ A e. RR <-> [_ ( k + 1 ) / x ]_ A e. RR ) ) | 
						
							| 36 | 35 | rspccva |  |-  ( ( A. y e. ( M ... N ) [_ y / x ]_ A e. RR /\ ( k + 1 ) e. ( M ... N ) ) -> [_ ( k + 1 ) / x ]_ A e. RR ) | 
						
							| 37 | 32 33 36 | syl2an |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> [_ ( k + 1 ) / x ]_ A e. RR ) | 
						
							| 38 |  | elfzofz |  |-  ( k e. ( M ..^ N ) -> k e. ( M ... N ) ) | 
						
							| 39 |  | csbeq1 |  |-  ( y = k -> [_ y / x ]_ A = [_ k / x ]_ A ) | 
						
							| 40 | 39 | eleq1d |  |-  ( y = k -> ( [_ y / x ]_ A e. RR <-> [_ k / x ]_ A e. RR ) ) | 
						
							| 41 | 40 | rspccva |  |-  ( ( A. y e. ( M ... N ) [_ y / x ]_ A e. RR /\ k e. ( M ... N ) ) -> [_ k / x ]_ A e. RR ) | 
						
							| 42 | 32 38 41 | syl2an |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> [_ k / x ]_ A e. RR ) | 
						
							| 43 | 37 42 | resubcld |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) e. RR ) | 
						
							| 44 |  | elfzoelz |  |-  ( k e. ( M ..^ N ) -> k e. ZZ ) | 
						
							| 45 | 44 | adantl |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> k e. ZZ ) | 
						
							| 46 | 45 | zred |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> k e. RR ) | 
						
							| 47 | 46 | recnd |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> k e. CC ) | 
						
							| 48 |  | ax-1cn |  |-  1 e. CC | 
						
							| 49 |  | pncan2 |  |-  ( ( k e. CC /\ 1 e. CC ) -> ( ( k + 1 ) - k ) = 1 ) | 
						
							| 50 | 47 48 49 | sylancl |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( k + 1 ) - k ) = 1 ) | 
						
							| 51 | 50 | oveq2d |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( X x. ( ( k + 1 ) - k ) ) = ( X x. 1 ) ) | 
						
							| 52 | 7 | recnd |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> X e. CC ) | 
						
							| 53 |  | peano2re |  |-  ( k e. RR -> ( k + 1 ) e. RR ) | 
						
							| 54 | 46 53 | syl |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( k + 1 ) e. RR ) | 
						
							| 55 | 54 | recnd |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( k + 1 ) e. CC ) | 
						
							| 56 | 52 55 47 | subdid |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( X x. ( ( k + 1 ) - k ) ) = ( ( X x. ( k + 1 ) ) - ( X x. k ) ) ) | 
						
							| 57 | 52 | mulridd |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( X x. 1 ) = X ) | 
						
							| 58 | 51 56 57 | 3eqtr3d |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( X x. ( k + 1 ) ) - ( X x. k ) ) = X ) | 
						
							| 59 |  | eqid |  |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | 
						
							| 60 | 59 | mulcn |  |-  x. e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) | 
						
							| 61 | 12 | zred |  |-  ( ph -> M e. RR ) | 
						
							| 62 | 61 | adantr |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> M e. RR ) | 
						
							| 63 | 14 | zred |  |-  ( ph -> N e. RR ) | 
						
							| 64 | 63 | adantr |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> N e. RR ) | 
						
							| 65 |  | elfzole1 |  |-  ( k e. ( M ..^ N ) -> M <_ k ) | 
						
							| 66 | 65 | adantl |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> M <_ k ) | 
						
							| 67 | 33 | adantl |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( k + 1 ) e. ( M ... N ) ) | 
						
							| 68 |  | elfzle2 |  |-  ( ( k + 1 ) e. ( M ... N ) -> ( k + 1 ) <_ N ) | 
						
							| 69 | 67 68 | syl |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( k + 1 ) <_ N ) | 
						
							| 70 |  | iccss |  |-  ( ( ( M e. RR /\ N e. RR ) /\ ( M <_ k /\ ( k + 1 ) <_ N ) ) -> ( k [,] ( k + 1 ) ) C_ ( M [,] N ) ) | 
						
							| 71 | 62 64 66 69 70 | syl22anc |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( k [,] ( k + 1 ) ) C_ ( M [,] N ) ) | 
						
							| 72 |  | iccssre |  |-  ( ( M e. RR /\ N e. RR ) -> ( M [,] N ) C_ RR ) | 
						
							| 73 | 61 63 72 | syl2anc |  |-  ( ph -> ( M [,] N ) C_ RR ) | 
						
							| 74 | 73 | adantr |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( M [,] N ) C_ RR ) | 
						
							| 75 | 71 74 | sstrd |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( k [,] ( k + 1 ) ) C_ RR ) | 
						
							| 76 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 77 | 75 76 | sstrdi |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( k [,] ( k + 1 ) ) C_ CC ) | 
						
							| 78 | 76 | a1i |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> RR C_ CC ) | 
						
							| 79 |  | cncfmptc |  |-  ( ( X e. RR /\ ( k [,] ( k + 1 ) ) C_ CC /\ RR C_ CC ) -> ( y e. ( k [,] ( k + 1 ) ) |-> X ) e. ( ( k [,] ( k + 1 ) ) -cn-> RR ) ) | 
						
							| 80 | 7 77 78 79 | syl3anc |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( y e. ( k [,] ( k + 1 ) ) |-> X ) e. ( ( k [,] ( k + 1 ) ) -cn-> RR ) ) | 
						
							| 81 |  | cncfmptid |  |-  ( ( ( k [,] ( k + 1 ) ) C_ RR /\ RR C_ CC ) -> ( y e. ( k [,] ( k + 1 ) ) |-> y ) e. ( ( k [,] ( k + 1 ) ) -cn-> RR ) ) | 
						
							| 82 | 75 76 81 | sylancl |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( y e. ( k [,] ( k + 1 ) ) |-> y ) e. ( ( k [,] ( k + 1 ) ) -cn-> RR ) ) | 
						
							| 83 |  | remulcl |  |-  ( ( X e. RR /\ y e. RR ) -> ( X x. y ) e. RR ) | 
						
							| 84 | 59 60 80 82 76 83 | cncfmpt2ss |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( y e. ( k [,] ( k + 1 ) ) |-> ( X x. y ) ) e. ( ( k [,] ( k + 1 ) ) -cn-> RR ) ) | 
						
							| 85 |  | reelprrecn |  |-  RR e. { RR , CC } | 
						
							| 86 | 85 | a1i |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> RR e. { RR , CC } ) | 
						
							| 87 | 62 | rexrd |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> M e. RR* ) | 
						
							| 88 |  | iooss1 |  |-  ( ( M e. RR* /\ M <_ k ) -> ( k (,) ( k + 1 ) ) C_ ( M (,) ( k + 1 ) ) ) | 
						
							| 89 | 87 66 88 | syl2anc |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( k (,) ( k + 1 ) ) C_ ( M (,) ( k + 1 ) ) ) | 
						
							| 90 | 64 | rexrd |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> N e. RR* ) | 
						
							| 91 |  | iooss2 |  |-  ( ( N e. RR* /\ ( k + 1 ) <_ N ) -> ( M (,) ( k + 1 ) ) C_ ( M (,) N ) ) | 
						
							| 92 | 90 69 91 | syl2anc |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( M (,) ( k + 1 ) ) C_ ( M (,) N ) ) | 
						
							| 93 | 89 92 | sstrd |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( k (,) ( k + 1 ) ) C_ ( M (,) N ) ) | 
						
							| 94 |  | ioossicc |  |-  ( M (,) N ) C_ ( M [,] N ) | 
						
							| 95 | 74 76 | sstrdi |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( M [,] N ) C_ CC ) | 
						
							| 96 | 94 95 | sstrid |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( M (,) N ) C_ CC ) | 
						
							| 97 | 93 96 | sstrd |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( k (,) ( k + 1 ) ) C_ CC ) | 
						
							| 98 | 97 | sselda |  |-  ( ( ( ph /\ k e. ( M ..^ N ) ) /\ y e. ( k (,) ( k + 1 ) ) ) -> y e. CC ) | 
						
							| 99 |  | 1cnd |  |-  ( ( ( ph /\ k e. ( M ..^ N ) ) /\ y e. ( k (,) ( k + 1 ) ) ) -> 1 e. CC ) | 
						
							| 100 | 78 | sselda |  |-  ( ( ( ph /\ k e. ( M ..^ N ) ) /\ y e. RR ) -> y e. CC ) | 
						
							| 101 |  | 1cnd |  |-  ( ( ( ph /\ k e. ( M ..^ N ) ) /\ y e. RR ) -> 1 e. CC ) | 
						
							| 102 | 86 | dvmptid |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( y e. RR |-> y ) ) = ( y e. RR |-> 1 ) ) | 
						
							| 103 |  | ioossre |  |-  ( k (,) ( k + 1 ) ) C_ RR | 
						
							| 104 | 103 | a1i |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( k (,) ( k + 1 ) ) C_ RR ) | 
						
							| 105 | 59 | tgioo2 |  |-  ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) | 
						
							| 106 |  | iooretop |  |-  ( k (,) ( k + 1 ) ) e. ( topGen ` ran (,) ) | 
						
							| 107 | 106 | a1i |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( k (,) ( k + 1 ) ) e. ( topGen ` ran (,) ) ) | 
						
							| 108 | 86 100 101 102 104 105 59 107 | dvmptres |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( y e. ( k (,) ( k + 1 ) ) |-> y ) ) = ( y e. ( k (,) ( k + 1 ) ) |-> 1 ) ) | 
						
							| 109 | 86 98 99 108 52 | dvmptcmul |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( y e. ( k (,) ( k + 1 ) ) |-> ( X x. y ) ) ) = ( y e. ( k (,) ( k + 1 ) ) |-> ( X x. 1 ) ) ) | 
						
							| 110 | 57 | mpteq2dv |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( y e. ( k (,) ( k + 1 ) ) |-> ( X x. 1 ) ) = ( y e. ( k (,) ( k + 1 ) ) |-> X ) ) | 
						
							| 111 | 109 110 | eqtrd |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( y e. ( k (,) ( k + 1 ) ) |-> ( X x. y ) ) ) = ( y e. ( k (,) ( k + 1 ) ) |-> X ) ) | 
						
							| 112 |  | nfcv |  |-  F/_ y A | 
						
							| 113 | 112 25 27 | cbvmpt |  |-  ( x e. ( k [,] ( k + 1 ) ) |-> A ) = ( y e. ( k [,] ( k + 1 ) ) |-> [_ y / x ]_ A ) | 
						
							| 114 | 71 | resmptd |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( x e. ( M [,] N ) |-> A ) |` ( k [,] ( k + 1 ) ) ) = ( x e. ( k [,] ( k + 1 ) ) |-> A ) ) | 
						
							| 115 | 2 | adantr |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( x e. ( M [,] N ) |-> A ) e. ( ( M [,] N ) -cn-> RR ) ) | 
						
							| 116 |  | rescncf |  |-  ( ( k [,] ( k + 1 ) ) C_ ( M [,] N ) -> ( ( x e. ( M [,] N ) |-> A ) e. ( ( M [,] N ) -cn-> RR ) -> ( ( x e. ( M [,] N ) |-> A ) |` ( k [,] ( k + 1 ) ) ) e. ( ( k [,] ( k + 1 ) ) -cn-> RR ) ) ) | 
						
							| 117 | 71 115 116 | sylc |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( x e. ( M [,] N ) |-> A ) |` ( k [,] ( k + 1 ) ) ) e. ( ( k [,] ( k + 1 ) ) -cn-> RR ) ) | 
						
							| 118 | 114 117 | eqeltrrd |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( x e. ( k [,] ( k + 1 ) ) |-> A ) e. ( ( k [,] ( k + 1 ) ) -cn-> RR ) ) | 
						
							| 119 | 113 118 | eqeltrrid |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( y e. ( k [,] ( k + 1 ) ) |-> [_ y / x ]_ A ) e. ( ( k [,] ( k + 1 ) ) -cn-> RR ) ) | 
						
							| 120 | 21 | adantr |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( x e. ( M [,] N ) |-> A ) : ( M [,] N ) --> RR ) | 
						
							| 121 | 120 23 | sylibr |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> A. x e. ( M [,] N ) A e. RR ) | 
						
							| 122 | 94 | sseli |  |-  ( y e. ( M (,) N ) -> y e. ( M [,] N ) ) | 
						
							| 123 | 29 | impcom |  |-  ( ( A. x e. ( M [,] N ) A e. RR /\ y e. ( M [,] N ) ) -> [_ y / x ]_ A e. RR ) | 
						
							| 124 | 121 122 123 | syl2an |  |-  ( ( ( ph /\ k e. ( M ..^ N ) ) /\ y e. ( M (,) N ) ) -> [_ y / x ]_ A e. RR ) | 
						
							| 125 | 124 | recnd |  |-  ( ( ( ph /\ k e. ( M ..^ N ) ) /\ y e. ( M (,) N ) ) -> [_ y / x ]_ A e. CC ) | 
						
							| 126 | 94 | sseli |  |-  ( x e. ( M (,) N ) -> x e. ( M [,] N ) ) | 
						
							| 127 | 21 | fvmptelcdm |  |-  ( ( ph /\ x e. ( M [,] N ) ) -> A e. RR ) | 
						
							| 128 | 127 | adantlr |  |-  ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M [,] N ) ) -> A e. RR ) | 
						
							| 129 | 126 128 | sylan2 |  |-  ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M (,) N ) ) -> A e. RR ) | 
						
							| 130 | 129 | fmpttd |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( x e. ( M (,) N ) |-> A ) : ( M (,) N ) --> RR ) | 
						
							| 131 |  | ioossre |  |-  ( M (,) N ) C_ RR | 
						
							| 132 |  | dvfre |  |-  ( ( ( x e. ( M (,) N ) |-> A ) : ( M (,) N ) --> RR /\ ( M (,) N ) C_ RR ) -> ( RR _D ( x e. ( M (,) N ) |-> A ) ) : dom ( RR _D ( x e. ( M (,) N ) |-> A ) ) --> RR ) | 
						
							| 133 | 130 131 132 | sylancl |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( x e. ( M (,) N ) |-> A ) ) : dom ( RR _D ( x e. ( M (,) N ) |-> A ) ) --> RR ) | 
						
							| 134 | 4 | adantr |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( x e. ( M (,) N ) |-> A ) ) = ( x e. ( M (,) N ) |-> B ) ) | 
						
							| 135 | 134 | dmeqd |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> dom ( RR _D ( x e. ( M (,) N ) |-> A ) ) = dom ( x e. ( M (,) N ) |-> B ) ) | 
						
							| 136 | 3 | adantlr |  |-  ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M (,) N ) ) -> B e. V ) | 
						
							| 137 | 136 | ralrimiva |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> A. x e. ( M (,) N ) B e. V ) | 
						
							| 138 |  | dmmptg |  |-  ( A. x e. ( M (,) N ) B e. V -> dom ( x e. ( M (,) N ) |-> B ) = ( M (,) N ) ) | 
						
							| 139 | 137 138 | syl |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> dom ( x e. ( M (,) N ) |-> B ) = ( M (,) N ) ) | 
						
							| 140 | 135 139 | eqtrd |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> dom ( RR _D ( x e. ( M (,) N ) |-> A ) ) = ( M (,) N ) ) | 
						
							| 141 | 134 140 | feq12d |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( RR _D ( x e. ( M (,) N ) |-> A ) ) : dom ( RR _D ( x e. ( M (,) N ) |-> A ) ) --> RR <-> ( x e. ( M (,) N ) |-> B ) : ( M (,) N ) --> RR ) ) | 
						
							| 142 | 133 141 | mpbid |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( x e. ( M (,) N ) |-> B ) : ( M (,) N ) --> RR ) | 
						
							| 143 |  | eqid |  |-  ( x e. ( M (,) N ) |-> B ) = ( x e. ( M (,) N ) |-> B ) | 
						
							| 144 | 143 | fmpt |  |-  ( A. x e. ( M (,) N ) B e. RR <-> ( x e. ( M (,) N ) |-> B ) : ( M (,) N ) --> RR ) | 
						
							| 145 | 142 144 | sylibr |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> A. x e. ( M (,) N ) B e. RR ) | 
						
							| 146 |  | nfcsb1v |  |-  F/_ x [_ y / x ]_ B | 
						
							| 147 | 146 | nfel1 |  |-  F/ x [_ y / x ]_ B e. RR | 
						
							| 148 |  | csbeq1a |  |-  ( x = y -> B = [_ y / x ]_ B ) | 
						
							| 149 | 148 | eleq1d |  |-  ( x = y -> ( B e. RR <-> [_ y / x ]_ B e. RR ) ) | 
						
							| 150 | 147 149 | rspc |  |-  ( y e. ( M (,) N ) -> ( A. x e. ( M (,) N ) B e. RR -> [_ y / x ]_ B e. RR ) ) | 
						
							| 151 | 145 150 | mpan9 |  |-  ( ( ( ph /\ k e. ( M ..^ N ) ) /\ y e. ( M (,) N ) ) -> [_ y / x ]_ B e. RR ) | 
						
							| 152 | 112 25 27 | cbvmpt |  |-  ( x e. ( M (,) N ) |-> A ) = ( y e. ( M (,) N ) |-> [_ y / x ]_ A ) | 
						
							| 153 | 152 | oveq2i |  |-  ( RR _D ( x e. ( M (,) N ) |-> A ) ) = ( RR _D ( y e. ( M (,) N ) |-> [_ y / x ]_ A ) ) | 
						
							| 154 |  | nfcv |  |-  F/_ y B | 
						
							| 155 | 154 146 148 | cbvmpt |  |-  ( x e. ( M (,) N ) |-> B ) = ( y e. ( M (,) N ) |-> [_ y / x ]_ B ) | 
						
							| 156 | 134 153 155 | 3eqtr3g |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( y e. ( M (,) N ) |-> [_ y / x ]_ A ) ) = ( y e. ( M (,) N ) |-> [_ y / x ]_ B ) ) | 
						
							| 157 | 86 125 151 156 93 105 59 107 | dvmptres |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( y e. ( k (,) ( k + 1 ) ) |-> [_ y / x ]_ A ) ) = ( y e. ( k (,) ( k + 1 ) ) |-> [_ y / x ]_ B ) ) | 
						
							| 158 | 8 | anassrs |  |-  ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( k (,) ( k + 1 ) ) ) -> X <_ B ) | 
						
							| 159 | 158 | ralrimiva |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> A. x e. ( k (,) ( k + 1 ) ) X <_ B ) | 
						
							| 160 |  | nfcv |  |-  F/_ x X | 
						
							| 161 |  | nfcv |  |-  F/_ x <_ | 
						
							| 162 | 160 161 146 | nfbr |  |-  F/ x X <_ [_ y / x ]_ B | 
						
							| 163 | 148 | breq2d |  |-  ( x = y -> ( X <_ B <-> X <_ [_ y / x ]_ B ) ) | 
						
							| 164 | 162 163 | rspc |  |-  ( y e. ( k (,) ( k + 1 ) ) -> ( A. x e. ( k (,) ( k + 1 ) ) X <_ B -> X <_ [_ y / x ]_ B ) ) | 
						
							| 165 | 159 164 | mpan9 |  |-  ( ( ( ph /\ k e. ( M ..^ N ) ) /\ y e. ( k (,) ( k + 1 ) ) ) -> X <_ [_ y / x ]_ B ) | 
						
							| 166 | 46 | rexrd |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> k e. RR* ) | 
						
							| 167 | 54 | rexrd |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( k + 1 ) e. RR* ) | 
						
							| 168 | 46 | lep1d |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> k <_ ( k + 1 ) ) | 
						
							| 169 |  | lbicc2 |  |-  ( ( k e. RR* /\ ( k + 1 ) e. RR* /\ k <_ ( k + 1 ) ) -> k e. ( k [,] ( k + 1 ) ) ) | 
						
							| 170 | 166 167 168 169 | syl3anc |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> k e. ( k [,] ( k + 1 ) ) ) | 
						
							| 171 |  | ubicc2 |  |-  ( ( k e. RR* /\ ( k + 1 ) e. RR* /\ k <_ ( k + 1 ) ) -> ( k + 1 ) e. ( k [,] ( k + 1 ) ) ) | 
						
							| 172 | 166 167 168 171 | syl3anc |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( k + 1 ) e. ( k [,] ( k + 1 ) ) ) | 
						
							| 173 |  | oveq2 |  |-  ( y = k -> ( X x. y ) = ( X x. k ) ) | 
						
							| 174 |  | oveq2 |  |-  ( y = ( k + 1 ) -> ( X x. y ) = ( X x. ( k + 1 ) ) ) | 
						
							| 175 | 46 54 84 111 119 157 165 170 172 168 173 39 174 34 | dvle |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( X x. ( k + 1 ) ) - ( X x. k ) ) <_ ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) | 
						
							| 176 | 58 175 | eqbrtrrd |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> X <_ ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) | 
						
							| 177 | 10 7 43 176 | fsumle |  |-  ( ph -> sum_ k e. ( M ..^ N ) X <_ sum_ k e. ( M ..^ N ) ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) | 
						
							| 178 |  | vex |  |-  y e. _V | 
						
							| 179 | 178 | a1i |  |-  ( y = M -> y e. _V ) | 
						
							| 180 |  | eqeq2 |  |-  ( y = M -> ( x = y <-> x = M ) ) | 
						
							| 181 | 180 | biimpa |  |-  ( ( y = M /\ x = y ) -> x = M ) | 
						
							| 182 | 181 5 | syl |  |-  ( ( y = M /\ x = y ) -> A = C ) | 
						
							| 183 | 179 182 | csbied |  |-  ( y = M -> [_ y / x ]_ A = C ) | 
						
							| 184 | 178 | a1i |  |-  ( y = N -> y e. _V ) | 
						
							| 185 |  | eqeq2 |  |-  ( y = N -> ( x = y <-> x = N ) ) | 
						
							| 186 | 185 | biimpa |  |-  ( ( y = N /\ x = y ) -> x = N ) | 
						
							| 187 | 186 6 | syl |  |-  ( ( y = N /\ x = y ) -> A = D ) | 
						
							| 188 | 184 187 | csbied |  |-  ( y = N -> [_ y / x ]_ A = D ) | 
						
							| 189 | 31 | recnd |  |-  ( ( ph /\ y e. ( M ... N ) ) -> [_ y / x ]_ A e. CC ) | 
						
							| 190 | 39 34 183 188 1 189 | telfsumo2 |  |-  ( ph -> sum_ k e. ( M ..^ N ) ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) = ( D - C ) ) | 
						
							| 191 | 177 190 | breqtrd |  |-  ( ph -> sum_ k e. ( M ..^ N ) X <_ ( D - C ) ) |