| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sge0rpcpnf.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 2 |  | sge0rpcpnf.nfi | ⊢ ( 𝜑  →  ¬  𝐴  ∈  Fin ) | 
						
							| 3 |  | sge0rpcpnf.b | ⊢ ( 𝜑  →  𝐵  ∈  ℝ+ ) | 
						
							| 4 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  +∞ )  →  𝐴  ∈  𝑉 ) | 
						
							| 5 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 6 | 5 | a1i | ⊢ ( 𝜑  →  0  ∈  ℝ* ) | 
						
							| 7 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 8 | 7 | a1i | ⊢ ( 𝜑  →  +∞  ∈  ℝ* ) | 
						
							| 9 | 3 | rpxrd | ⊢ ( 𝜑  →  𝐵  ∈  ℝ* ) | 
						
							| 10 | 3 | rpge0d | ⊢ ( 𝜑  →  0  ≤  𝐵 ) | 
						
							| 11 | 3 | rpred | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 12 |  | ltpnf | ⊢ ( 𝐵  ∈  ℝ  →  𝐵  <  +∞ ) | 
						
							| 13 | 11 12 | syl | ⊢ ( 𝜑  →  𝐵  <  +∞ ) | 
						
							| 14 | 9 8 13 | xrltled | ⊢ ( 𝜑  →  𝐵  ≤  +∞ ) | 
						
							| 15 | 6 8 9 10 14 | eliccxrd | ⊢ ( 𝜑  →  𝐵  ∈  ( 0 [,] +∞ ) ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ( 0 [,] +∞ ) ) | 
						
							| 17 |  | eqid | ⊢ ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  ( 𝑥  ∈  𝐴  ↦  𝐵 ) | 
						
							| 18 | 16 17 | fmptd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( 𝜑  ∧  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  +∞ )  →  ( 𝑥  ∈  𝐴  ↦  𝐵 ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 20 | 4 19 | sge0xrcl | ⊢ ( ( 𝜑  ∧  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  +∞ )  →  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  ∈  ℝ* ) | 
						
							| 21 | 7 | a1i | ⊢ ( ( 𝜑  ∧  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  +∞ )  →  +∞  ∈  ℝ* ) | 
						
							| 22 |  | simpr | ⊢ ( ( 𝜑  ∧  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  +∞ )  →  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  +∞ ) | 
						
							| 23 | 20 21 22 | xrgtned | ⊢ ( ( 𝜑  ∧  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  +∞ )  →  +∞  ≠  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ) | 
						
							| 24 | 23 | necomd | ⊢ ( ( 𝜑  ∧  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  +∞ )  →  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  ≠  +∞ ) | 
						
							| 25 | 24 | neneqd | ⊢ ( ( 𝜑  ∧  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  +∞ )  →  ¬  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  =  +∞ ) | 
						
							| 26 | 4 19 | sge0repnf | ⊢ ( ( 𝜑  ∧  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  +∞ )  →  ( ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  ∈  ℝ  ↔  ¬  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  =  +∞ ) ) | 
						
							| 27 | 25 26 | mpbird | ⊢ ( ( 𝜑  ∧  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  +∞ )  →  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  ∈  ℝ ) | 
						
							| 28 | 11 | adantr | ⊢ ( ( 𝜑  ∧  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  +∞ )  →  𝐵  ∈  ℝ ) | 
						
							| 29 | 3 | rpne0d | ⊢ ( 𝜑  →  𝐵  ≠  0 ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( 𝜑  ∧  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  +∞ )  →  𝐵  ≠  0 ) | 
						
							| 31 | 27 28 30 | redivcld | ⊢ ( ( 𝜑  ∧  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  +∞ )  →  ( ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  /  𝐵 )  ∈  ℝ ) | 
						
							| 32 |  | arch | ⊢ ( ( ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  /  𝐵 )  ∈  ℝ  →  ∃ 𝑛  ∈  ℕ ( ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  /  𝐵 )  <  𝑛 ) | 
						
							| 33 | 31 32 | syl | ⊢ ( ( 𝜑  ∧  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  +∞ )  →  ∃ 𝑛  ∈  ℕ ( ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  /  𝐵 )  <  𝑛 ) | 
						
							| 34 |  | ishashinf | ⊢ ( ¬  𝐴  ∈  Fin  →  ∀ 𝑛  ∈  ℕ ∃ 𝑦  ∈  𝒫  𝐴 ( ♯ ‘ 𝑦 )  =  𝑛 ) | 
						
							| 35 | 2 34 | syl | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  ℕ ∃ 𝑦  ∈  𝒫  𝐴 ( ♯ ‘ 𝑦 )  =  𝑛 ) | 
						
							| 36 | 35 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ∃ 𝑦  ∈  𝒫  𝐴 ( ♯ ‘ 𝑦 )  =  𝑛 ) | 
						
							| 37 |  | df-rex | ⊢ ( ∃ 𝑦  ∈  𝒫  𝐴 ( ♯ ‘ 𝑦 )  =  𝑛  ↔  ∃ 𝑦 ( 𝑦  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑦 )  =  𝑛 ) ) | 
						
							| 38 | 36 37 | sylib | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ∃ 𝑦 ( 𝑦  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑦 )  =  𝑛 ) ) | 
						
							| 39 | 38 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  +∞ )  ∧  𝑛  ∈  ℕ )  →  ∃ 𝑦 ( 𝑦  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑦 )  =  𝑛 ) ) | 
						
							| 40 | 39 | 3adant3 | ⊢ ( ( ( 𝜑  ∧  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  +∞ )  ∧  𝑛  ∈  ℕ  ∧  ( ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  /  𝐵 )  <  𝑛 )  →  ∃ 𝑦 ( 𝑦  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑦 )  =  𝑛 ) ) | 
						
							| 41 |  | nfv | ⊢ Ⅎ 𝑦 ( ( 𝜑  ∧  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  +∞ )  ∧  𝑛  ∈  ℕ  ∧  ( ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  /  𝐵 )  <  𝑛 ) | 
						
							| 42 |  | simprl | ⊢ ( ( ( ( 𝜑  ∧  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  +∞ )  ∧  𝑛  ∈  ℕ  ∧  ( ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  /  𝐵 )  <  𝑛 )  ∧  ( 𝑦  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑦 )  =  𝑛 ) )  →  𝑦  ∈  𝒫  𝐴 ) | 
						
							| 43 |  | simpr | ⊢ ( ( 𝑛  ∈  ℕ  ∧  ( ♯ ‘ 𝑦 )  =  𝑛 )  →  ( ♯ ‘ 𝑦 )  =  𝑛 ) | 
						
							| 44 |  | simpl | ⊢ ( ( 𝑛  ∈  ℕ  ∧  ( ♯ ‘ 𝑦 )  =  𝑛 )  →  𝑛  ∈  ℕ ) | 
						
							| 45 | 43 44 | eqeltrd | ⊢ ( ( 𝑛  ∈  ℕ  ∧  ( ♯ ‘ 𝑦 )  =  𝑛 )  →  ( ♯ ‘ 𝑦 )  ∈  ℕ ) | 
						
							| 46 |  | nnnn0 | ⊢ ( ( ♯ ‘ 𝑦 )  ∈  ℕ  →  ( ♯ ‘ 𝑦 )  ∈  ℕ0 ) | 
						
							| 47 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 48 | 47 | a1i | ⊢ ( ( ♯ ‘ 𝑦 )  ∈  ℕ  →  𝑦  ∈  V ) | 
						
							| 49 |  | hashclb | ⊢ ( 𝑦  ∈  V  →  ( 𝑦  ∈  Fin  ↔  ( ♯ ‘ 𝑦 )  ∈  ℕ0 ) ) | 
						
							| 50 | 48 49 | syl | ⊢ ( ( ♯ ‘ 𝑦 )  ∈  ℕ  →  ( 𝑦  ∈  Fin  ↔  ( ♯ ‘ 𝑦 )  ∈  ℕ0 ) ) | 
						
							| 51 | 46 50 | mpbird | ⊢ ( ( ♯ ‘ 𝑦 )  ∈  ℕ  →  𝑦  ∈  Fin ) | 
						
							| 52 | 45 51 | syl | ⊢ ( ( 𝑛  ∈  ℕ  ∧  ( ♯ ‘ 𝑦 )  =  𝑛 )  →  𝑦  ∈  Fin ) | 
						
							| 53 | 52 | adantrl | ⊢ ( ( 𝑛  ∈  ℕ  ∧  ( 𝑦  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑦 )  =  𝑛 ) )  →  𝑦  ∈  Fin ) | 
						
							| 54 | 53 | 3ad2antl2 | ⊢ ( ( ( ( 𝜑  ∧  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  +∞ )  ∧  𝑛  ∈  ℕ  ∧  ( ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  /  𝐵 )  <  𝑛 )  ∧  ( 𝑦  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑦 )  =  𝑛 ) )  →  𝑦  ∈  Fin ) | 
						
							| 55 | 42 54 | elind | ⊢ ( ( ( ( 𝜑  ∧  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  +∞ )  ∧  𝑛  ∈  ℕ  ∧  ( ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  /  𝐵 )  <  𝑛 )  ∧  ( 𝑦  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑦 )  =  𝑛 ) )  →  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) ) | 
						
							| 56 |  | simp3 | ⊢ ( ( ( 𝜑  ∧  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  +∞ )  ∧  𝑛  ∈  ℕ  ∧  ( ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  /  𝐵 )  <  𝑛 )  →  ( ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  /  𝐵 )  <  𝑛 ) | 
						
							| 57 | 27 | 3ad2ant1 | ⊢ ( ( ( 𝜑  ∧  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  +∞ )  ∧  𝑛  ∈  ℕ  ∧  ( ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  /  𝐵 )  <  𝑛 )  →  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  ∈  ℝ ) | 
						
							| 58 |  | nnre | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℝ ) | 
						
							| 59 | 58 | 3ad2ant2 | ⊢ ( ( ( 𝜑  ∧  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  +∞ )  ∧  𝑛  ∈  ℕ  ∧  ( ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  /  𝐵 )  <  𝑛 )  →  𝑛  ∈  ℝ ) | 
						
							| 60 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  +∞ )  →  𝐵  ∈  ℝ+ ) | 
						
							| 61 | 60 | 3ad2ant1 | ⊢ ( ( ( 𝜑  ∧  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  +∞ )  ∧  𝑛  ∈  ℕ  ∧  ( ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  /  𝐵 )  <  𝑛 )  →  𝐵  ∈  ℝ+ ) | 
						
							| 62 | 57 59 61 | ltdivmul2d | ⊢ ( ( ( 𝜑  ∧  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  +∞ )  ∧  𝑛  ∈  ℕ  ∧  ( ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  /  𝐵 )  <  𝑛 )  →  ( ( ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  /  𝐵 )  <  𝑛  ↔  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  ( 𝑛  ·  𝐵 ) ) ) | 
						
							| 63 | 56 62 | mpbid | ⊢ ( ( ( 𝜑  ∧  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  +∞ )  ∧  𝑛  ∈  ℕ  ∧  ( ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  /  𝐵 )  <  𝑛 )  →  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  ( 𝑛  ·  𝐵 ) ) | 
						
							| 64 | 63 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  +∞ )  ∧  𝑛  ∈  ℕ  ∧  ( ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  /  𝐵 )  <  𝑛 )  ∧  ( 𝑦  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑦 )  =  𝑛 ) )  →  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  ( 𝑛  ·  𝐵 ) ) | 
						
							| 65 | 53 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑦  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑦 )  =  𝑛 ) )  →  𝑦  ∈  Fin ) | 
						
							| 66 | 5 | a1i | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑦  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑦 )  =  𝑛 ) )  ∧  𝑥  ∈  𝑦 )  →  0  ∈  ℝ* ) | 
						
							| 67 | 7 | a1i | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑦  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑦 )  =  𝑛 ) )  ∧  𝑥  ∈  𝑦 )  →  +∞  ∈  ℝ* ) | 
						
							| 68 | 9 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑦  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑦 )  =  𝑛 ) )  ∧  𝑥  ∈  𝑦 )  →  𝐵  ∈  ℝ* ) | 
						
							| 69 | 10 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑦  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑦 )  =  𝑛 ) )  ∧  𝑥  ∈  𝑦 )  →  0  ≤  𝐵 ) | 
						
							| 70 | 13 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑦  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑦 )  =  𝑛 ) )  ∧  𝑥  ∈  𝑦 )  →  𝐵  <  +∞ ) | 
						
							| 71 | 66 67 68 69 70 | elicod | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑦  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑦 )  =  𝑛 ) )  ∧  𝑥  ∈  𝑦 )  →  𝐵  ∈  ( 0 [,) +∞ ) ) | 
						
							| 72 | 65 71 | sge0fsummpt | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑦  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑦 )  =  𝑛 ) )  →  ( Σ^ ‘ ( 𝑥  ∈  𝑦  ↦  𝐵 ) )  =  Σ 𝑥  ∈  𝑦 𝐵 ) | 
						
							| 73 | 11 | recnd | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 74 | 73 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑦  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑦 )  =  𝑛 ) )  →  𝐵  ∈  ℂ ) | 
						
							| 75 |  | fsumconst | ⊢ ( ( 𝑦  ∈  Fin  ∧  𝐵  ∈  ℂ )  →  Σ 𝑥  ∈  𝑦 𝐵  =  ( ( ♯ ‘ 𝑦 )  ·  𝐵 ) ) | 
						
							| 76 | 65 74 75 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑦  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑦 )  =  𝑛 ) )  →  Σ 𝑥  ∈  𝑦 𝐵  =  ( ( ♯ ‘ 𝑦 )  ·  𝐵 ) ) | 
						
							| 77 |  | oveq1 | ⊢ ( ( ♯ ‘ 𝑦 )  =  𝑛  →  ( ( ♯ ‘ 𝑦 )  ·  𝐵 )  =  ( 𝑛  ·  𝐵 ) ) | 
						
							| 78 | 77 | adantl | ⊢ ( ( 𝑦  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑦 )  =  𝑛 )  →  ( ( ♯ ‘ 𝑦 )  ·  𝐵 )  =  ( 𝑛  ·  𝐵 ) ) | 
						
							| 79 | 78 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑦  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑦 )  =  𝑛 ) )  →  ( ( ♯ ‘ 𝑦 )  ·  𝐵 )  =  ( 𝑛  ·  𝐵 ) ) | 
						
							| 80 | 72 76 79 | 3eqtrrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑦  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑦 )  =  𝑛 ) )  →  ( 𝑛  ·  𝐵 )  =  ( Σ^ ‘ ( 𝑥  ∈  𝑦  ↦  𝐵 ) ) ) | 
						
							| 81 | 80 | adantllr | ⊢ ( ( ( ( 𝜑  ∧  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  +∞ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑦  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑦 )  =  𝑛 ) )  →  ( 𝑛  ·  𝐵 )  =  ( Σ^ ‘ ( 𝑥  ∈  𝑦  ↦  𝐵 ) ) ) | 
						
							| 82 | 81 | 3adantl3 | ⊢ ( ( ( ( 𝜑  ∧  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  +∞ )  ∧  𝑛  ∈  ℕ  ∧  ( ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  /  𝐵 )  <  𝑛 )  ∧  ( 𝑦  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑦 )  =  𝑛 ) )  →  ( 𝑛  ·  𝐵 )  =  ( Σ^ ‘ ( 𝑥  ∈  𝑦  ↦  𝐵 ) ) ) | 
						
							| 83 | 64 82 | breqtrd | ⊢ ( ( ( ( 𝜑  ∧  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  +∞ )  ∧  𝑛  ∈  ℕ  ∧  ( ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  /  𝐵 )  <  𝑛 )  ∧  ( 𝑦  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑦 )  =  𝑛 ) )  →  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  ( Σ^ ‘ ( 𝑥  ∈  𝑦  ↦  𝐵 ) ) ) | 
						
							| 84 | 55 83 | jca | ⊢ ( ( ( ( 𝜑  ∧  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  +∞ )  ∧  𝑛  ∈  ℕ  ∧  ( ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  /  𝐵 )  <  𝑛 )  ∧  ( 𝑦  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑦 )  =  𝑛 ) )  →  ( 𝑦  ∈  ( 𝒫  𝐴  ∩  Fin )  ∧  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  ( Σ^ ‘ ( 𝑥  ∈  𝑦  ↦  𝐵 ) ) ) ) | 
						
							| 85 | 84 | ex | ⊢ ( ( ( 𝜑  ∧  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  +∞ )  ∧  𝑛  ∈  ℕ  ∧  ( ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  /  𝐵 )  <  𝑛 )  →  ( ( 𝑦  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑦 )  =  𝑛 )  →  ( 𝑦  ∈  ( 𝒫  𝐴  ∩  Fin )  ∧  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  ( Σ^ ‘ ( 𝑥  ∈  𝑦  ↦  𝐵 ) ) ) ) ) | 
						
							| 86 | 41 85 | eximd | ⊢ ( ( ( 𝜑  ∧  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  +∞ )  ∧  𝑛  ∈  ℕ  ∧  ( ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  /  𝐵 )  <  𝑛 )  →  ( ∃ 𝑦 ( 𝑦  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑦 )  =  𝑛 )  →  ∃ 𝑦 ( 𝑦  ∈  ( 𝒫  𝐴  ∩  Fin )  ∧  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  ( Σ^ ‘ ( 𝑥  ∈  𝑦  ↦  𝐵 ) ) ) ) ) | 
						
							| 87 | 40 86 | mpd | ⊢ ( ( ( 𝜑  ∧  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  +∞ )  ∧  𝑛  ∈  ℕ  ∧  ( ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  /  𝐵 )  <  𝑛 )  →  ∃ 𝑦 ( 𝑦  ∈  ( 𝒫  𝐴  ∩  Fin )  ∧  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  ( Σ^ ‘ ( 𝑥  ∈  𝑦  ↦  𝐵 ) ) ) ) | 
						
							| 88 |  | df-rex | ⊢ ( ∃ 𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  ( Σ^ ‘ ( 𝑥  ∈  𝑦  ↦  𝐵 ) )  ↔  ∃ 𝑦 ( 𝑦  ∈  ( 𝒫  𝐴  ∩  Fin )  ∧  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  ( Σ^ ‘ ( 𝑥  ∈  𝑦  ↦  𝐵 ) ) ) ) | 
						
							| 89 | 87 88 | sylibr | ⊢ ( ( ( 𝜑  ∧  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  +∞ )  ∧  𝑛  ∈  ℕ  ∧  ( ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  /  𝐵 )  <  𝑛 )  →  ∃ 𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  ( Σ^ ‘ ( 𝑥  ∈  𝑦  ↦  𝐵 ) ) ) | 
						
							| 90 | 89 | 3exp | ⊢ ( ( 𝜑  ∧  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  +∞ )  →  ( 𝑛  ∈  ℕ  →  ( ( ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  /  𝐵 )  <  𝑛  →  ∃ 𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  ( Σ^ ‘ ( 𝑥  ∈  𝑦  ↦  𝐵 ) ) ) ) ) | 
						
							| 91 | 90 | rexlimdv | ⊢ ( ( 𝜑  ∧  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  +∞ )  →  ( ∃ 𝑛  ∈  ℕ ( ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  /  𝐵 )  <  𝑛  →  ∃ 𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  ( Σ^ ‘ ( 𝑥  ∈  𝑦  ↦  𝐵 ) ) ) ) | 
						
							| 92 | 33 91 | mpd | ⊢ ( ( 𝜑  ∧  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  +∞ )  →  ∃ 𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  ( Σ^ ‘ ( 𝑥  ∈  𝑦  ↦  𝐵 ) ) ) | 
						
							| 93 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) )  →  𝐴  ∈  𝑉 ) | 
						
							| 94 | 16 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) )  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ( 0 [,] +∞ ) ) | 
						
							| 95 |  | elpwinss | ⊢ ( 𝑦  ∈  ( 𝒫  𝐴  ∩  Fin )  →  𝑦  ⊆  𝐴 ) | 
						
							| 96 | 95 | adantl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) )  →  𝑦  ⊆  𝐴 ) | 
						
							| 97 | 93 94 96 | sge0lessmpt | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) )  →  ( Σ^ ‘ ( 𝑥  ∈  𝑦  ↦  𝐵 ) )  ≤  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ) | 
						
							| 98 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) )  →  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) ) | 
						
							| 99 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑦 )  →  𝐵  ∈  ( 0 [,] +∞ ) ) | 
						
							| 100 |  | eqid | ⊢ ( 𝑥  ∈  𝑦  ↦  𝐵 )  =  ( 𝑥  ∈  𝑦  ↦  𝐵 ) | 
						
							| 101 | 99 100 | fmptd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑦  ↦  𝐵 ) : 𝑦 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 102 | 101 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) )  →  ( 𝑥  ∈  𝑦  ↦  𝐵 ) : 𝑦 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 103 | 98 102 | sge0xrcl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) )  →  ( Σ^ ‘ ( 𝑥  ∈  𝑦  ↦  𝐵 ) )  ∈  ℝ* ) | 
						
							| 104 | 1 18 | sge0xrcl | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  ∈  ℝ* ) | 
						
							| 105 | 104 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) )  →  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  ∈  ℝ* ) | 
						
							| 106 | 103 105 | xrlenltd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) )  →  ( ( Σ^ ‘ ( 𝑥  ∈  𝑦  ↦  𝐵 ) )  ≤  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  ↔  ¬  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  ( Σ^ ‘ ( 𝑥  ∈  𝑦  ↦  𝐵 ) ) ) ) | 
						
							| 107 | 97 106 | mpbid | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) )  →  ¬  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  ( Σ^ ‘ ( 𝑥  ∈  𝑦  ↦  𝐵 ) ) ) | 
						
							| 108 | 107 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) ¬  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  ( Σ^ ‘ ( 𝑥  ∈  𝑦  ↦  𝐵 ) ) ) | 
						
							| 109 |  | ralnex | ⊢ ( ∀ 𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) ¬  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  ( Σ^ ‘ ( 𝑥  ∈  𝑦  ↦  𝐵 ) )  ↔  ¬  ∃ 𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  ( Σ^ ‘ ( 𝑥  ∈  𝑦  ↦  𝐵 ) ) ) | 
						
							| 110 | 108 109 | sylib | ⊢ ( 𝜑  →  ¬  ∃ 𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  ( Σ^ ‘ ( 𝑥  ∈  𝑦  ↦  𝐵 ) ) ) | 
						
							| 111 | 110 | adantr | ⊢ ( ( 𝜑  ∧  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  +∞ )  →  ¬  ∃ 𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  ( Σ^ ‘ ( 𝑥  ∈  𝑦  ↦  𝐵 ) ) ) | 
						
							| 112 | 92 111 | pm2.65da | ⊢ ( 𝜑  →  ¬  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  +∞ ) | 
						
							| 113 |  | nltpnft | ⊢ ( ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  ∈  ℝ*  →  ( ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  =  +∞  ↔  ¬  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  +∞ ) ) | 
						
							| 114 | 104 113 | syl | ⊢ ( 𝜑  →  ( ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  =  +∞  ↔  ¬  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  +∞ ) ) | 
						
							| 115 | 112 114 | mpbird | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  =  +∞ ) |