| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sge0rpcpnf.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 2 |
|
sge0rpcpnf.nfi |
⊢ ( 𝜑 → ¬ 𝐴 ∈ Fin ) |
| 3 |
|
sge0rpcpnf.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) |
| 4 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < +∞ ) → 𝐴 ∈ 𝑉 ) |
| 5 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 6 |
5
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℝ* ) |
| 7 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 8 |
7
|
a1i |
⊢ ( 𝜑 → +∞ ∈ ℝ* ) |
| 9 |
3
|
rpxrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 10 |
3
|
rpge0d |
⊢ ( 𝜑 → 0 ≤ 𝐵 ) |
| 11 |
3
|
rpred |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 12 |
|
ltpnf |
⊢ ( 𝐵 ∈ ℝ → 𝐵 < +∞ ) |
| 13 |
11 12
|
syl |
⊢ ( 𝜑 → 𝐵 < +∞ ) |
| 14 |
9 8 13
|
xrltled |
⊢ ( 𝜑 → 𝐵 ≤ +∞ ) |
| 15 |
6 8 9 10 14
|
eliccxrd |
⊢ ( 𝜑 → 𝐵 ∈ ( 0 [,] +∞ ) ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) ) |
| 17 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 18 |
16 17
|
fmptd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) |
| 19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < +∞ ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) |
| 20 |
4 19
|
sge0xrcl |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < +∞ ) → ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ∈ ℝ* ) |
| 21 |
7
|
a1i |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < +∞ ) → +∞ ∈ ℝ* ) |
| 22 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < +∞ ) → ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < +∞ ) |
| 23 |
20 21 22
|
xrgtned |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < +∞ ) → +∞ ≠ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ) |
| 24 |
23
|
necomd |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < +∞ ) → ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ≠ +∞ ) |
| 25 |
24
|
neneqd |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < +∞ ) → ¬ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) = +∞ ) |
| 26 |
4 19
|
sge0repnf |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < +∞ ) → ( ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ∈ ℝ ↔ ¬ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) = +∞ ) ) |
| 27 |
25 26
|
mpbird |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < +∞ ) → ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ∈ ℝ ) |
| 28 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < +∞ ) → 𝐵 ∈ ℝ ) |
| 29 |
3
|
rpne0d |
⊢ ( 𝜑 → 𝐵 ≠ 0 ) |
| 30 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < +∞ ) → 𝐵 ≠ 0 ) |
| 31 |
27 28 30
|
redivcld |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < +∞ ) → ( ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) / 𝐵 ) ∈ ℝ ) |
| 32 |
|
arch |
⊢ ( ( ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) / 𝐵 ) ∈ ℝ → ∃ 𝑛 ∈ ℕ ( ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) / 𝐵 ) < 𝑛 ) |
| 33 |
31 32
|
syl |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < +∞ ) → ∃ 𝑛 ∈ ℕ ( ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) / 𝐵 ) < 𝑛 ) |
| 34 |
|
ishashinf |
⊢ ( ¬ 𝐴 ∈ Fin → ∀ 𝑛 ∈ ℕ ∃ 𝑦 ∈ 𝒫 𝐴 ( ♯ ‘ 𝑦 ) = 𝑛 ) |
| 35 |
2 34
|
syl |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ∃ 𝑦 ∈ 𝒫 𝐴 ( ♯ ‘ 𝑦 ) = 𝑛 ) |
| 36 |
35
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∃ 𝑦 ∈ 𝒫 𝐴 ( ♯ ‘ 𝑦 ) = 𝑛 ) |
| 37 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ 𝒫 𝐴 ( ♯ ‘ 𝑦 ) = 𝑛 ↔ ∃ 𝑦 ( 𝑦 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑦 ) = 𝑛 ) ) |
| 38 |
36 37
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∃ 𝑦 ( 𝑦 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑦 ) = 𝑛 ) ) |
| 39 |
38
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < +∞ ) ∧ 𝑛 ∈ ℕ ) → ∃ 𝑦 ( 𝑦 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑦 ) = 𝑛 ) ) |
| 40 |
39
|
3adant3 |
⊢ ( ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < +∞ ) ∧ 𝑛 ∈ ℕ ∧ ( ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) / 𝐵 ) < 𝑛 ) → ∃ 𝑦 ( 𝑦 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑦 ) = 𝑛 ) ) |
| 41 |
|
nfv |
⊢ Ⅎ 𝑦 ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < +∞ ) ∧ 𝑛 ∈ ℕ ∧ ( ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) / 𝐵 ) < 𝑛 ) |
| 42 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < +∞ ) ∧ 𝑛 ∈ ℕ ∧ ( ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) / 𝐵 ) < 𝑛 ) ∧ ( 𝑦 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑦 ) = 𝑛 ) ) → 𝑦 ∈ 𝒫 𝐴 ) |
| 43 |
|
simpr |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ♯ ‘ 𝑦 ) = 𝑛 ) → ( ♯ ‘ 𝑦 ) = 𝑛 ) |
| 44 |
|
simpl |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ♯ ‘ 𝑦 ) = 𝑛 ) → 𝑛 ∈ ℕ ) |
| 45 |
43 44
|
eqeltrd |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ♯ ‘ 𝑦 ) = 𝑛 ) → ( ♯ ‘ 𝑦 ) ∈ ℕ ) |
| 46 |
|
nnnn0 |
⊢ ( ( ♯ ‘ 𝑦 ) ∈ ℕ → ( ♯ ‘ 𝑦 ) ∈ ℕ0 ) |
| 47 |
|
vex |
⊢ 𝑦 ∈ V |
| 48 |
47
|
a1i |
⊢ ( ( ♯ ‘ 𝑦 ) ∈ ℕ → 𝑦 ∈ V ) |
| 49 |
|
hashclb |
⊢ ( 𝑦 ∈ V → ( 𝑦 ∈ Fin ↔ ( ♯ ‘ 𝑦 ) ∈ ℕ0 ) ) |
| 50 |
48 49
|
syl |
⊢ ( ( ♯ ‘ 𝑦 ) ∈ ℕ → ( 𝑦 ∈ Fin ↔ ( ♯ ‘ 𝑦 ) ∈ ℕ0 ) ) |
| 51 |
46 50
|
mpbird |
⊢ ( ( ♯ ‘ 𝑦 ) ∈ ℕ → 𝑦 ∈ Fin ) |
| 52 |
45 51
|
syl |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ♯ ‘ 𝑦 ) = 𝑛 ) → 𝑦 ∈ Fin ) |
| 53 |
52
|
adantrl |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝑦 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑦 ) = 𝑛 ) ) → 𝑦 ∈ Fin ) |
| 54 |
53
|
3ad2antl2 |
⊢ ( ( ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < +∞ ) ∧ 𝑛 ∈ ℕ ∧ ( ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) / 𝐵 ) < 𝑛 ) ∧ ( 𝑦 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑦 ) = 𝑛 ) ) → 𝑦 ∈ Fin ) |
| 55 |
42 54
|
elind |
⊢ ( ( ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < +∞ ) ∧ 𝑛 ∈ ℕ ∧ ( ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) / 𝐵 ) < 𝑛 ) ∧ ( 𝑦 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑦 ) = 𝑛 ) ) → 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) |
| 56 |
|
simp3 |
⊢ ( ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < +∞ ) ∧ 𝑛 ∈ ℕ ∧ ( ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) / 𝐵 ) < 𝑛 ) → ( ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) / 𝐵 ) < 𝑛 ) |
| 57 |
27
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < +∞ ) ∧ 𝑛 ∈ ℕ ∧ ( ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) / 𝐵 ) < 𝑛 ) → ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ∈ ℝ ) |
| 58 |
|
nnre |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ ) |
| 59 |
58
|
3ad2ant2 |
⊢ ( ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < +∞ ) ∧ 𝑛 ∈ ℕ ∧ ( ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) / 𝐵 ) < 𝑛 ) → 𝑛 ∈ ℝ ) |
| 60 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < +∞ ) → 𝐵 ∈ ℝ+ ) |
| 61 |
60
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < +∞ ) ∧ 𝑛 ∈ ℕ ∧ ( ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) / 𝐵 ) < 𝑛 ) → 𝐵 ∈ ℝ+ ) |
| 62 |
57 59 61
|
ltdivmul2d |
⊢ ( ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < +∞ ) ∧ 𝑛 ∈ ℕ ∧ ( ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) / 𝐵 ) < 𝑛 ) → ( ( ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) / 𝐵 ) < 𝑛 ↔ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < ( 𝑛 · 𝐵 ) ) ) |
| 63 |
56 62
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < +∞ ) ∧ 𝑛 ∈ ℕ ∧ ( ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) / 𝐵 ) < 𝑛 ) → ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < ( 𝑛 · 𝐵 ) ) |
| 64 |
63
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < +∞ ) ∧ 𝑛 ∈ ℕ ∧ ( ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) / 𝐵 ) < 𝑛 ) ∧ ( 𝑦 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑦 ) = 𝑛 ) ) → ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < ( 𝑛 · 𝐵 ) ) |
| 65 |
53
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑦 ) = 𝑛 ) ) → 𝑦 ∈ Fin ) |
| 66 |
5
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑦 ) = 𝑛 ) ) ∧ 𝑥 ∈ 𝑦 ) → 0 ∈ ℝ* ) |
| 67 |
7
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑦 ) = 𝑛 ) ) ∧ 𝑥 ∈ 𝑦 ) → +∞ ∈ ℝ* ) |
| 68 |
9
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑦 ) = 𝑛 ) ) ∧ 𝑥 ∈ 𝑦 ) → 𝐵 ∈ ℝ* ) |
| 69 |
10
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑦 ) = 𝑛 ) ) ∧ 𝑥 ∈ 𝑦 ) → 0 ≤ 𝐵 ) |
| 70 |
13
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑦 ) = 𝑛 ) ) ∧ 𝑥 ∈ 𝑦 ) → 𝐵 < +∞ ) |
| 71 |
66 67 68 69 70
|
elicod |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑦 ) = 𝑛 ) ) ∧ 𝑥 ∈ 𝑦 ) → 𝐵 ∈ ( 0 [,) +∞ ) ) |
| 72 |
65 71
|
sge0fsummpt |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑦 ) = 𝑛 ) ) → ( Σ^ ‘ ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) ) = Σ 𝑥 ∈ 𝑦 𝐵 ) |
| 73 |
11
|
recnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 74 |
73
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑦 ) = 𝑛 ) ) → 𝐵 ∈ ℂ ) |
| 75 |
|
fsumconst |
⊢ ( ( 𝑦 ∈ Fin ∧ 𝐵 ∈ ℂ ) → Σ 𝑥 ∈ 𝑦 𝐵 = ( ( ♯ ‘ 𝑦 ) · 𝐵 ) ) |
| 76 |
65 74 75
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑦 ) = 𝑛 ) ) → Σ 𝑥 ∈ 𝑦 𝐵 = ( ( ♯ ‘ 𝑦 ) · 𝐵 ) ) |
| 77 |
|
oveq1 |
⊢ ( ( ♯ ‘ 𝑦 ) = 𝑛 → ( ( ♯ ‘ 𝑦 ) · 𝐵 ) = ( 𝑛 · 𝐵 ) ) |
| 78 |
77
|
adantl |
⊢ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑦 ) = 𝑛 ) → ( ( ♯ ‘ 𝑦 ) · 𝐵 ) = ( 𝑛 · 𝐵 ) ) |
| 79 |
78
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑦 ) = 𝑛 ) ) → ( ( ♯ ‘ 𝑦 ) · 𝐵 ) = ( 𝑛 · 𝐵 ) ) |
| 80 |
72 76 79
|
3eqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑦 ) = 𝑛 ) ) → ( 𝑛 · 𝐵 ) = ( Σ^ ‘ ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) ) ) |
| 81 |
80
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < +∞ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑦 ) = 𝑛 ) ) → ( 𝑛 · 𝐵 ) = ( Σ^ ‘ ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) ) ) |
| 82 |
81
|
3adantl3 |
⊢ ( ( ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < +∞ ) ∧ 𝑛 ∈ ℕ ∧ ( ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) / 𝐵 ) < 𝑛 ) ∧ ( 𝑦 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑦 ) = 𝑛 ) ) → ( 𝑛 · 𝐵 ) = ( Σ^ ‘ ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) ) ) |
| 83 |
64 82
|
breqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < +∞ ) ∧ 𝑛 ∈ ℕ ∧ ( ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) / 𝐵 ) < 𝑛 ) ∧ ( 𝑦 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑦 ) = 𝑛 ) ) → ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ^ ‘ ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) ) ) |
| 84 |
55 83
|
jca |
⊢ ( ( ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < +∞ ) ∧ 𝑛 ∈ ℕ ∧ ( ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) / 𝐵 ) < 𝑛 ) ∧ ( 𝑦 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑦 ) = 𝑛 ) ) → ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ^ ‘ ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) ) ) ) |
| 85 |
84
|
ex |
⊢ ( ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < +∞ ) ∧ 𝑛 ∈ ℕ ∧ ( ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) / 𝐵 ) < 𝑛 ) → ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑦 ) = 𝑛 ) → ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ^ ‘ ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) ) ) ) ) |
| 86 |
41 85
|
eximd |
⊢ ( ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < +∞ ) ∧ 𝑛 ∈ ℕ ∧ ( ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) / 𝐵 ) < 𝑛 ) → ( ∃ 𝑦 ( 𝑦 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑦 ) = 𝑛 ) → ∃ 𝑦 ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ^ ‘ ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) ) ) ) ) |
| 87 |
40 86
|
mpd |
⊢ ( ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < +∞ ) ∧ 𝑛 ∈ ℕ ∧ ( ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) / 𝐵 ) < 𝑛 ) → ∃ 𝑦 ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ^ ‘ ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) ) ) ) |
| 88 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ^ ‘ ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) ) ↔ ∃ 𝑦 ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ^ ‘ ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) ) ) ) |
| 89 |
87 88
|
sylibr |
⊢ ( ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < +∞ ) ∧ 𝑛 ∈ ℕ ∧ ( ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) / 𝐵 ) < 𝑛 ) → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ^ ‘ ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) ) ) |
| 90 |
89
|
3exp |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < +∞ ) → ( 𝑛 ∈ ℕ → ( ( ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) / 𝐵 ) < 𝑛 → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ^ ‘ ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) ) ) ) ) |
| 91 |
90
|
rexlimdv |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < +∞ ) → ( ∃ 𝑛 ∈ ℕ ( ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) / 𝐵 ) < 𝑛 → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ^ ‘ ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) ) ) ) |
| 92 |
33 91
|
mpd |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < +∞ ) → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ^ ‘ ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) ) ) |
| 93 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝐴 ∈ 𝑉 ) |
| 94 |
16
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) ) |
| 95 |
|
elpwinss |
⊢ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑦 ⊆ 𝐴 ) |
| 96 |
95
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑦 ⊆ 𝐴 ) |
| 97 |
93 94 96
|
sge0lessmpt |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( Σ^ ‘ ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) ) ≤ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ) |
| 98 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) |
| 99 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑦 ) → 𝐵 ∈ ( 0 [,] +∞ ) ) |
| 100 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) = ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) |
| 101 |
99 100
|
fmptd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) : 𝑦 ⟶ ( 0 [,] +∞ ) ) |
| 102 |
101
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) : 𝑦 ⟶ ( 0 [,] +∞ ) ) |
| 103 |
98 102
|
sge0xrcl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( Σ^ ‘ ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) ) ∈ ℝ* ) |
| 104 |
1 18
|
sge0xrcl |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ∈ ℝ* ) |
| 105 |
104
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ∈ ℝ* ) |
| 106 |
103 105
|
xrlenltd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( Σ^ ‘ ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) ) ≤ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ↔ ¬ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ^ ‘ ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) ) ) ) |
| 107 |
97 106
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ¬ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ^ ‘ ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) ) ) |
| 108 |
107
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ¬ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ^ ‘ ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) ) ) |
| 109 |
|
ralnex |
⊢ ( ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ¬ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ^ ‘ ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) ) ↔ ¬ ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ^ ‘ ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) ) ) |
| 110 |
108 109
|
sylib |
⊢ ( 𝜑 → ¬ ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ^ ‘ ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) ) ) |
| 111 |
110
|
adantr |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < +∞ ) → ¬ ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ^ ‘ ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) ) ) |
| 112 |
92 111
|
pm2.65da |
⊢ ( 𝜑 → ¬ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < +∞ ) |
| 113 |
|
nltpnft |
⊢ ( ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ∈ ℝ* → ( ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) = +∞ ↔ ¬ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < +∞ ) ) |
| 114 |
104 113
|
syl |
⊢ ( 𝜑 → ( ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) = +∞ ↔ ¬ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < +∞ ) ) |
| 115 |
112 114
|
mpbird |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) = +∞ ) |