Metamath Proof Explorer


Theorem volfiniune

Description: The Lebesgue measure function is countably additive. This theorem is to volfiniun what voliune is to voliun . (Contributed by Thierry Arnoux, 16-Oct-2017)

Ref Expression
Assertion volfiniune ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵 ) → ( vol ‘ 𝑛𝐴 𝐵 ) = Σ* 𝑛𝐴 ( vol ‘ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 simpl1 ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵 ) ∧ ∀ 𝑛𝐴 ( vol ‘ 𝐵 ) ∈ ℝ ) → 𝐴 ∈ Fin )
2 simpl2 ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵 ) ∧ ∀ 𝑛𝐴 ( vol ‘ 𝐵 ) ∈ ℝ ) → ∀ 𝑛𝐴 𝐵 ∈ dom vol )
3 simpr ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵 ) ∧ ∀ 𝑛𝐴 ( vol ‘ 𝐵 ) ∈ ℝ ) → ∀ 𝑛𝐴 ( vol ‘ 𝐵 ) ∈ ℝ )
4 r19.26 ( ∀ 𝑛𝐴 ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ↔ ( ∀ 𝑛𝐴 𝐵 ∈ dom vol ∧ ∀ 𝑛𝐴 ( vol ‘ 𝐵 ) ∈ ℝ ) )
5 2 3 4 sylanbrc ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵 ) ∧ ∀ 𝑛𝐴 ( vol ‘ 𝐵 ) ∈ ℝ ) → ∀ 𝑛𝐴 ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) )
6 simpl3 ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵 ) ∧ ∀ 𝑛𝐴 ( vol ‘ 𝐵 ) ∈ ℝ ) → Disj 𝑛𝐴 𝐵 )
7 volfiniun ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛𝐴 ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑛𝐴 𝐵 ) → ( vol ‘ 𝑛𝐴 𝐵 ) = Σ 𝑛𝐴 ( vol ‘ 𝐵 ) )
8 1 5 6 7 syl3anc ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵 ) ∧ ∀ 𝑛𝐴 ( vol ‘ 𝐵 ) ∈ ℝ ) → ( vol ‘ 𝑛𝐴 𝐵 ) = Σ 𝑛𝐴 ( vol ‘ 𝐵 ) )
9 nfcv 𝑛 𝐴
10 9 nfel1 𝑛 𝐴 ∈ Fin
11 nfra1 𝑛𝑛𝐴 𝐵 ∈ dom vol
12 nfdisj1 𝑛 Disj 𝑛𝐴 𝐵
13 10 11 12 nf3an 𝑛 ( 𝐴 ∈ Fin ∧ ∀ 𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵 )
14 nfra1 𝑛𝑛𝐴 ( vol ‘ 𝐵 ) ∈ ℝ
15 13 14 nfan 𝑛 ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵 ) ∧ ∀ 𝑛𝐴 ( vol ‘ 𝐵 ) ∈ ℝ )
16 3 r19.21bi ( ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵 ) ∧ ∀ 𝑛𝐴 ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ 𝑛𝐴 ) → ( vol ‘ 𝐵 ) ∈ ℝ )
17 rspa ( ( ∀ 𝑛𝐴 𝐵 ∈ dom vol ∧ 𝑛𝐴 ) → 𝐵 ∈ dom vol )
18 volf vol : dom vol ⟶ ( 0 [,] +∞ )
19 18 ffvelrni ( 𝐵 ∈ dom vol → ( vol ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) )
20 17 19 syl ( ( ∀ 𝑛𝐴 𝐵 ∈ dom vol ∧ 𝑛𝐴 ) → ( vol ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) )
21 2 20 sylan ( ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵 ) ∧ ∀ 𝑛𝐴 ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ 𝑛𝐴 ) → ( vol ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) )
22 0xr 0 ∈ ℝ*
23 pnfxr +∞ ∈ ℝ*
24 elicc1 ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( vol ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) ↔ ( ( vol ‘ 𝐵 ) ∈ ℝ* ∧ 0 ≤ ( vol ‘ 𝐵 ) ∧ ( vol ‘ 𝐵 ) ≤ +∞ ) ) )
25 22 23 24 mp2an ( ( vol ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) ↔ ( ( vol ‘ 𝐵 ) ∈ ℝ* ∧ 0 ≤ ( vol ‘ 𝐵 ) ∧ ( vol ‘ 𝐵 ) ≤ +∞ ) )
26 25 simp2bi ( ( vol ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) → 0 ≤ ( vol ‘ 𝐵 ) )
27 21 26 syl ( ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵 ) ∧ ∀ 𝑛𝐴 ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ 𝑛𝐴 ) → 0 ≤ ( vol ‘ 𝐵 ) )
28 ltpnf ( ( vol ‘ 𝐵 ) ∈ ℝ → ( vol ‘ 𝐵 ) < +∞ )
29 16 28 syl ( ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵 ) ∧ ∀ 𝑛𝐴 ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ 𝑛𝐴 ) → ( vol ‘ 𝐵 ) < +∞ )
30 0re 0 ∈ ℝ
31 elico2 ( ( 0 ∈ ℝ ∧ +∞ ∈ ℝ* ) → ( ( vol ‘ 𝐵 ) ∈ ( 0 [,) +∞ ) ↔ ( ( vol ‘ 𝐵 ) ∈ ℝ ∧ 0 ≤ ( vol ‘ 𝐵 ) ∧ ( vol ‘ 𝐵 ) < +∞ ) ) )
32 30 23 31 mp2an ( ( vol ‘ 𝐵 ) ∈ ( 0 [,) +∞ ) ↔ ( ( vol ‘ 𝐵 ) ∈ ℝ ∧ 0 ≤ ( vol ‘ 𝐵 ) ∧ ( vol ‘ 𝐵 ) < +∞ ) )
33 16 27 29 32 syl3anbrc ( ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵 ) ∧ ∀ 𝑛𝐴 ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ 𝑛𝐴 ) → ( vol ‘ 𝐵 ) ∈ ( 0 [,) +∞ ) )
34 9 15 1 33 esumpfinvalf ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵 ) ∧ ∀ 𝑛𝐴 ( vol ‘ 𝐵 ) ∈ ℝ ) → Σ* 𝑛𝐴 ( vol ‘ 𝐵 ) = Σ 𝑛𝐴 ( vol ‘ 𝐵 ) )
35 8 34 eqtr4d ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵 ) ∧ ∀ 𝑛𝐴 ( vol ‘ 𝐵 ) ∈ ℝ ) → ( vol ‘ 𝑛𝐴 𝐵 ) = Σ* 𝑛𝐴 ( vol ‘ 𝐵 ) )
36 simpr ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵 ) ∧ ∃ 𝑛𝐴 ( vol ‘ 𝐵 ) = +∞ ) → ∃ 𝑛𝐴 ( vol ‘ 𝐵 ) = +∞ )
37 nfv 𝑘 ( vol ‘ 𝐵 ) = +∞
38 nfcv 𝑛 vol
39 nfcsb1v 𝑛 𝑘 / 𝑛 𝐵
40 38 39 nffv 𝑛 ( vol ‘ 𝑘 / 𝑛 𝐵 )
41 40 nfeq1 𝑛 ( vol ‘ 𝑘 / 𝑛 𝐵 ) = +∞
42 csbeq1a ( 𝑛 = 𝑘𝐵 = 𝑘 / 𝑛 𝐵 )
43 42 fveqeq2d ( 𝑛 = 𝑘 → ( ( vol ‘ 𝐵 ) = +∞ ↔ ( vol ‘ 𝑘 / 𝑛 𝐵 ) = +∞ ) )
44 37 41 43 cbvrexw ( ∃ 𝑛𝐴 ( vol ‘ 𝐵 ) = +∞ ↔ ∃ 𝑘𝐴 ( vol ‘ 𝑘 / 𝑛 𝐵 ) = +∞ )
45 36 44 sylib ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵 ) ∧ ∃ 𝑛𝐴 ( vol ‘ 𝐵 ) = +∞ ) → ∃ 𝑘𝐴 ( vol ‘ 𝑘 / 𝑛 𝐵 ) = +∞ )
46 39 nfel1 𝑛 𝑘 / 𝑛 𝐵 ∈ dom vol
47 42 eleq1d ( 𝑛 = 𝑘 → ( 𝐵 ∈ dom vol ↔ 𝑘 / 𝑛 𝐵 ∈ dom vol ) )
48 46 47 rspc ( 𝑘𝐴 → ( ∀ 𝑛𝐴 𝐵 ∈ dom vol → 𝑘 / 𝑛 𝐵 ∈ dom vol ) )
49 48 impcom ( ( ∀ 𝑛𝐴 𝐵 ∈ dom vol ∧ 𝑘𝐴 ) → 𝑘 / 𝑛 𝐵 ∈ dom vol )
50 49 adantll ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛𝐴 𝐵 ∈ dom vol ) ∧ 𝑘𝐴 ) → 𝑘 / 𝑛 𝐵 ∈ dom vol )
51 finiunmbl ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛𝐴 𝐵 ∈ dom vol ) → 𝑛𝐴 𝐵 ∈ dom vol )
52 51 adantr ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛𝐴 𝐵 ∈ dom vol ) ∧ 𝑘𝐴 ) → 𝑛𝐴 𝐵 ∈ dom vol )
53 nfcv 𝑛 𝑘
54 9 53 39 42 ssiun2sf ( 𝑘𝐴 𝑘 / 𝑛 𝐵 𝑛𝐴 𝐵 )
55 54 adantl ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛𝐴 𝐵 ∈ dom vol ) ∧ 𝑘𝐴 ) → 𝑘 / 𝑛 𝐵 𝑛𝐴 𝐵 )
56 volss ( ( 𝑘 / 𝑛 𝐵 ∈ dom vol ∧ 𝑛𝐴 𝐵 ∈ dom vol ∧ 𝑘 / 𝑛 𝐵 𝑛𝐴 𝐵 ) → ( vol ‘ 𝑘 / 𝑛 𝐵 ) ≤ ( vol ‘ 𝑛𝐴 𝐵 ) )
57 50 52 55 56 syl3anc ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛𝐴 𝐵 ∈ dom vol ) ∧ 𝑘𝐴 ) → ( vol ‘ 𝑘 / 𝑛 𝐵 ) ≤ ( vol ‘ 𝑛𝐴 𝐵 ) )
58 57 3adantl3 ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵 ) ∧ 𝑘𝐴 ) → ( vol ‘ 𝑘 / 𝑛 𝐵 ) ≤ ( vol ‘ 𝑛𝐴 𝐵 ) )
59 58 adantlr ( ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵 ) ∧ ∃ 𝑛𝐴 ( vol ‘ 𝐵 ) = +∞ ) ∧ 𝑘𝐴 ) → ( vol ‘ 𝑘 / 𝑛 𝐵 ) ≤ ( vol ‘ 𝑛𝐴 𝐵 ) )
60 59 ralrimiva ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵 ) ∧ ∃ 𝑛𝐴 ( vol ‘ 𝐵 ) = +∞ ) → ∀ 𝑘𝐴 ( vol ‘ 𝑘 / 𝑛 𝐵 ) ≤ ( vol ‘ 𝑛𝐴 𝐵 ) )
61 r19.29r ( ( ∃ 𝑘𝐴 ( vol ‘ 𝑘 / 𝑛 𝐵 ) = +∞ ∧ ∀ 𝑘𝐴 ( vol ‘ 𝑘 / 𝑛 𝐵 ) ≤ ( vol ‘ 𝑛𝐴 𝐵 ) ) → ∃ 𝑘𝐴 ( ( vol ‘ 𝑘 / 𝑛 𝐵 ) = +∞ ∧ ( vol ‘ 𝑘 / 𝑛 𝐵 ) ≤ ( vol ‘ 𝑛𝐴 𝐵 ) ) )
62 45 60 61 syl2anc ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵 ) ∧ ∃ 𝑛𝐴 ( vol ‘ 𝐵 ) = +∞ ) → ∃ 𝑘𝐴 ( ( vol ‘ 𝑘 / 𝑛 𝐵 ) = +∞ ∧ ( vol ‘ 𝑘 / 𝑛 𝐵 ) ≤ ( vol ‘ 𝑛𝐴 𝐵 ) ) )
63 breq1 ( ( vol ‘ 𝑘 / 𝑛 𝐵 ) = +∞ → ( ( vol ‘ 𝑘 / 𝑛 𝐵 ) ≤ ( vol ‘ 𝑛𝐴 𝐵 ) ↔ +∞ ≤ ( vol ‘ 𝑛𝐴 𝐵 ) ) )
64 63 biimpa ( ( ( vol ‘ 𝑘 / 𝑛 𝐵 ) = +∞ ∧ ( vol ‘ 𝑘 / 𝑛 𝐵 ) ≤ ( vol ‘ 𝑛𝐴 𝐵 ) ) → +∞ ≤ ( vol ‘ 𝑛𝐴 𝐵 ) )
65 64 reximi ( ∃ 𝑘𝐴 ( ( vol ‘ 𝑘 / 𝑛 𝐵 ) = +∞ ∧ ( vol ‘ 𝑘 / 𝑛 𝐵 ) ≤ ( vol ‘ 𝑛𝐴 𝐵 ) ) → ∃ 𝑘𝐴 +∞ ≤ ( vol ‘ 𝑛𝐴 𝐵 ) )
66 62 65 syl ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵 ) ∧ ∃ 𝑛𝐴 ( vol ‘ 𝐵 ) = +∞ ) → ∃ 𝑘𝐴 +∞ ≤ ( vol ‘ 𝑛𝐴 𝐵 ) )
67 rexex ( ∃ 𝑘𝐴 +∞ ≤ ( vol ‘ 𝑛𝐴 𝐵 ) → ∃ 𝑘 +∞ ≤ ( vol ‘ 𝑛𝐴 𝐵 ) )
68 19.9v ( ∃ 𝑘 +∞ ≤ ( vol ‘ 𝑛𝐴 𝐵 ) ↔ +∞ ≤ ( vol ‘ 𝑛𝐴 𝐵 ) )
69 67 68 sylib ( ∃ 𝑘𝐴 +∞ ≤ ( vol ‘ 𝑛𝐴 𝐵 ) → +∞ ≤ ( vol ‘ 𝑛𝐴 𝐵 ) )
70 66 69 syl ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵 ) ∧ ∃ 𝑛𝐴 ( vol ‘ 𝐵 ) = +∞ ) → +∞ ≤ ( vol ‘ 𝑛𝐴 𝐵 ) )
71 iccssxr ( 0 [,] +∞ ) ⊆ ℝ*
72 18 ffvelrni ( 𝑛𝐴 𝐵 ∈ dom vol → ( vol ‘ 𝑛𝐴 𝐵 ) ∈ ( 0 [,] +∞ ) )
73 71 72 sseldi ( 𝑛𝐴 𝐵 ∈ dom vol → ( vol ‘ 𝑛𝐴 𝐵 ) ∈ ℝ* )
74 51 73 syl ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛𝐴 𝐵 ∈ dom vol ) → ( vol ‘ 𝑛𝐴 𝐵 ) ∈ ℝ* )
75 74 3adant3 ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵 ) → ( vol ‘ 𝑛𝐴 𝐵 ) ∈ ℝ* )
76 75 adantr ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵 ) ∧ ∃ 𝑛𝐴 ( vol ‘ 𝐵 ) = +∞ ) → ( vol ‘ 𝑛𝐴 𝐵 ) ∈ ℝ* )
77 xgepnf ( ( vol ‘ 𝑛𝐴 𝐵 ) ∈ ℝ* → ( +∞ ≤ ( vol ‘ 𝑛𝐴 𝐵 ) ↔ ( vol ‘ 𝑛𝐴 𝐵 ) = +∞ ) )
78 76 77 syl ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵 ) ∧ ∃ 𝑛𝐴 ( vol ‘ 𝐵 ) = +∞ ) → ( +∞ ≤ ( vol ‘ 𝑛𝐴 𝐵 ) ↔ ( vol ‘ 𝑛𝐴 𝐵 ) = +∞ ) )
79 70 78 mpbid ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵 ) ∧ ∃ 𝑛𝐴 ( vol ‘ 𝐵 ) = +∞ ) → ( vol ‘ 𝑛𝐴 𝐵 ) = +∞ )
80 nfre1 𝑛𝑛𝐴 ( vol ‘ 𝐵 ) = +∞
81 13 80 nfan 𝑛 ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵 ) ∧ ∃ 𝑛𝐴 ( vol ‘ 𝐵 ) = +∞ )
82 simpl1 ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵 ) ∧ ∃ 𝑛𝐴 ( vol ‘ 𝐵 ) = +∞ ) → 𝐴 ∈ Fin )
83 20 3ad2antl2 ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵 ) ∧ 𝑛𝐴 ) → ( vol ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) )
84 83 adantlr ( ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵 ) ∧ ∃ 𝑛𝐴 ( vol ‘ 𝐵 ) = +∞ ) ∧ 𝑛𝐴 ) → ( vol ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) )
85 81 82 84 36 esumpinfval ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵 ) ∧ ∃ 𝑛𝐴 ( vol ‘ 𝐵 ) = +∞ ) → Σ* 𝑛𝐴 ( vol ‘ 𝐵 ) = +∞ )
86 79 85 eqtr4d ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵 ) ∧ ∃ 𝑛𝐴 ( vol ‘ 𝐵 ) = +∞ ) → ( vol ‘ 𝑛𝐴 𝐵 ) = Σ* 𝑛𝐴 ( vol ‘ 𝐵 ) )
87 exmid ( ∀ 𝑛𝐴 ( vol ‘ 𝐵 ) ∈ ℝ ∨ ¬ ∀ 𝑛𝐴 ( vol ‘ 𝐵 ) ∈ ℝ )
88 rexnal ( ∃ 𝑛𝐴 ¬ ( vol ‘ 𝐵 ) ∈ ℝ ↔ ¬ ∀ 𝑛𝐴 ( vol ‘ 𝐵 ) ∈ ℝ )
89 88 orbi2i ( ( ∀ 𝑛𝐴 ( vol ‘ 𝐵 ) ∈ ℝ ∨ ∃ 𝑛𝐴 ¬ ( vol ‘ 𝐵 ) ∈ ℝ ) ↔ ( ∀ 𝑛𝐴 ( vol ‘ 𝐵 ) ∈ ℝ ∨ ¬ ∀ 𝑛𝐴 ( vol ‘ 𝐵 ) ∈ ℝ ) )
90 87 89 mpbir ( ∀ 𝑛𝐴 ( vol ‘ 𝐵 ) ∈ ℝ ∨ ∃ 𝑛𝐴 ¬ ( vol ‘ 𝐵 ) ∈ ℝ )
91 r19.29 ( ( ∀ 𝑛𝐴 𝐵 ∈ dom vol ∧ ∃ 𝑛𝐴 ¬ ( vol ‘ 𝐵 ) ∈ ℝ ) → ∃ 𝑛𝐴 ( 𝐵 ∈ dom vol ∧ ¬ ( vol ‘ 𝐵 ) ∈ ℝ ) )
92 xrge0nre ( ( ( vol ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) ∧ ¬ ( vol ‘ 𝐵 ) ∈ ℝ ) → ( vol ‘ 𝐵 ) = +∞ )
93 19 92 sylan ( ( 𝐵 ∈ dom vol ∧ ¬ ( vol ‘ 𝐵 ) ∈ ℝ ) → ( vol ‘ 𝐵 ) = +∞ )
94 93 reximi ( ∃ 𝑛𝐴 ( 𝐵 ∈ dom vol ∧ ¬ ( vol ‘ 𝐵 ) ∈ ℝ ) → ∃ 𝑛𝐴 ( vol ‘ 𝐵 ) = +∞ )
95 91 94 syl ( ( ∀ 𝑛𝐴 𝐵 ∈ dom vol ∧ ∃ 𝑛𝐴 ¬ ( vol ‘ 𝐵 ) ∈ ℝ ) → ∃ 𝑛𝐴 ( vol ‘ 𝐵 ) = +∞ )
96 95 ex ( ∀ 𝑛𝐴 𝐵 ∈ dom vol → ( ∃ 𝑛𝐴 ¬ ( vol ‘ 𝐵 ) ∈ ℝ → ∃ 𝑛𝐴 ( vol ‘ 𝐵 ) = +∞ ) )
97 96 orim2d ( ∀ 𝑛𝐴 𝐵 ∈ dom vol → ( ( ∀ 𝑛𝐴 ( vol ‘ 𝐵 ) ∈ ℝ ∨ ∃ 𝑛𝐴 ¬ ( vol ‘ 𝐵 ) ∈ ℝ ) → ( ∀ 𝑛𝐴 ( vol ‘ 𝐵 ) ∈ ℝ ∨ ∃ 𝑛𝐴 ( vol ‘ 𝐵 ) = +∞ ) ) )
98 90 97 mpi ( ∀ 𝑛𝐴 𝐵 ∈ dom vol → ( ∀ 𝑛𝐴 ( vol ‘ 𝐵 ) ∈ ℝ ∨ ∃ 𝑛𝐴 ( vol ‘ 𝐵 ) = +∞ ) )
99 98 3ad2ant2 ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵 ) → ( ∀ 𝑛𝐴 ( vol ‘ 𝐵 ) ∈ ℝ ∨ ∃ 𝑛𝐴 ( vol ‘ 𝐵 ) = +∞ ) )
100 35 86 99 mpjaodan ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵 ) → ( vol ‘ 𝑛𝐴 𝐵 ) = Σ* 𝑛𝐴 ( vol ‘ 𝐵 ) )