Step |
Hyp |
Ref |
Expression |
1 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛 ∈ 𝐴 𝐵 ) ∧ ∀ 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) ∈ ℝ ) → 𝐴 ∈ Fin ) |
2 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛 ∈ 𝐴 𝐵 ) ∧ ∀ 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) ∈ ℝ ) → ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ) |
3 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛 ∈ 𝐴 𝐵 ) ∧ ∀ 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) ∈ ℝ ) → ∀ 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) ∈ ℝ ) |
4 |
|
r19.26 |
⊢ ( ∀ 𝑛 ∈ 𝐴 ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ↔ ( ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ∧ ∀ 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) ∈ ℝ ) ) |
5 |
2 3 4
|
sylanbrc |
⊢ ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛 ∈ 𝐴 𝐵 ) ∧ ∀ 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) ∈ ℝ ) → ∀ 𝑛 ∈ 𝐴 ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) |
6 |
|
simpl3 |
⊢ ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛 ∈ 𝐴 𝐵 ) ∧ ∀ 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) ∈ ℝ ) → Disj 𝑛 ∈ 𝐴 𝐵 ) |
7 |
|
volfiniun |
⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ 𝐴 𝐵 ) → ( vol ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) = Σ 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) ) |
8 |
1 5 6 7
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛 ∈ 𝐴 𝐵 ) ∧ ∀ 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) ∈ ℝ ) → ( vol ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) = Σ 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) ) |
9 |
|
nfcv |
⊢ Ⅎ 𝑛 𝐴 |
10 |
9
|
nfel1 |
⊢ Ⅎ 𝑛 𝐴 ∈ Fin |
11 |
|
nfra1 |
⊢ Ⅎ 𝑛 ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol |
12 |
|
nfdisj1 |
⊢ Ⅎ 𝑛 Disj 𝑛 ∈ 𝐴 𝐵 |
13 |
10 11 12
|
nf3an |
⊢ Ⅎ 𝑛 ( 𝐴 ∈ Fin ∧ ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛 ∈ 𝐴 𝐵 ) |
14 |
|
nfra1 |
⊢ Ⅎ 𝑛 ∀ 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) ∈ ℝ |
15 |
13 14
|
nfan |
⊢ Ⅎ 𝑛 ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛 ∈ 𝐴 𝐵 ) ∧ ∀ 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) ∈ ℝ ) |
16 |
3
|
r19.21bi |
⊢ ( ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛 ∈ 𝐴 𝐵 ) ∧ ∀ 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ 𝑛 ∈ 𝐴 ) → ( vol ‘ 𝐵 ) ∈ ℝ ) |
17 |
|
rspa |
⊢ ( ( ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ∧ 𝑛 ∈ 𝐴 ) → 𝐵 ∈ dom vol ) |
18 |
|
volf |
⊢ vol : dom vol ⟶ ( 0 [,] +∞ ) |
19 |
18
|
ffvelrni |
⊢ ( 𝐵 ∈ dom vol → ( vol ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) ) |
20 |
17 19
|
syl |
⊢ ( ( ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ∧ 𝑛 ∈ 𝐴 ) → ( vol ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) ) |
21 |
2 20
|
sylan |
⊢ ( ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛 ∈ 𝐴 𝐵 ) ∧ ∀ 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ 𝑛 ∈ 𝐴 ) → ( vol ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) ) |
22 |
|
0xr |
⊢ 0 ∈ ℝ* |
23 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
24 |
|
elicc1 |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( vol ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) ↔ ( ( vol ‘ 𝐵 ) ∈ ℝ* ∧ 0 ≤ ( vol ‘ 𝐵 ) ∧ ( vol ‘ 𝐵 ) ≤ +∞ ) ) ) |
25 |
22 23 24
|
mp2an |
⊢ ( ( vol ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) ↔ ( ( vol ‘ 𝐵 ) ∈ ℝ* ∧ 0 ≤ ( vol ‘ 𝐵 ) ∧ ( vol ‘ 𝐵 ) ≤ +∞ ) ) |
26 |
25
|
simp2bi |
⊢ ( ( vol ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) → 0 ≤ ( vol ‘ 𝐵 ) ) |
27 |
21 26
|
syl |
⊢ ( ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛 ∈ 𝐴 𝐵 ) ∧ ∀ 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ 𝑛 ∈ 𝐴 ) → 0 ≤ ( vol ‘ 𝐵 ) ) |
28 |
|
ltpnf |
⊢ ( ( vol ‘ 𝐵 ) ∈ ℝ → ( vol ‘ 𝐵 ) < +∞ ) |
29 |
16 28
|
syl |
⊢ ( ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛 ∈ 𝐴 𝐵 ) ∧ ∀ 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ 𝑛 ∈ 𝐴 ) → ( vol ‘ 𝐵 ) < +∞ ) |
30 |
|
0re |
⊢ 0 ∈ ℝ |
31 |
|
elico2 |
⊢ ( ( 0 ∈ ℝ ∧ +∞ ∈ ℝ* ) → ( ( vol ‘ 𝐵 ) ∈ ( 0 [,) +∞ ) ↔ ( ( vol ‘ 𝐵 ) ∈ ℝ ∧ 0 ≤ ( vol ‘ 𝐵 ) ∧ ( vol ‘ 𝐵 ) < +∞ ) ) ) |
32 |
30 23 31
|
mp2an |
⊢ ( ( vol ‘ 𝐵 ) ∈ ( 0 [,) +∞ ) ↔ ( ( vol ‘ 𝐵 ) ∈ ℝ ∧ 0 ≤ ( vol ‘ 𝐵 ) ∧ ( vol ‘ 𝐵 ) < +∞ ) ) |
33 |
16 27 29 32
|
syl3anbrc |
⊢ ( ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛 ∈ 𝐴 𝐵 ) ∧ ∀ 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ 𝑛 ∈ 𝐴 ) → ( vol ‘ 𝐵 ) ∈ ( 0 [,) +∞ ) ) |
34 |
9 15 1 33
|
esumpfinvalf |
⊢ ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛 ∈ 𝐴 𝐵 ) ∧ ∀ 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) ∈ ℝ ) → Σ* 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) = Σ 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) ) |
35 |
8 34
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛 ∈ 𝐴 𝐵 ) ∧ ∀ 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) ∈ ℝ ) → ( vol ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) = Σ* 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) ) |
36 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛 ∈ 𝐴 𝐵 ) ∧ ∃ 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) = +∞ ) → ∃ 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) = +∞ ) |
37 |
|
nfv |
⊢ Ⅎ 𝑘 ( vol ‘ 𝐵 ) = +∞ |
38 |
|
nfcv |
⊢ Ⅎ 𝑛 vol |
39 |
|
nfcsb1v |
⊢ Ⅎ 𝑛 ⦋ 𝑘 / 𝑛 ⦌ 𝐵 |
40 |
38 39
|
nffv |
⊢ Ⅎ 𝑛 ( vol ‘ ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ) |
41 |
40
|
nfeq1 |
⊢ Ⅎ 𝑛 ( vol ‘ ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ) = +∞ |
42 |
|
csbeq1a |
⊢ ( 𝑛 = 𝑘 → 𝐵 = ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ) |
43 |
42
|
fveqeq2d |
⊢ ( 𝑛 = 𝑘 → ( ( vol ‘ 𝐵 ) = +∞ ↔ ( vol ‘ ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ) = +∞ ) ) |
44 |
37 41 43
|
cbvrexw |
⊢ ( ∃ 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) = +∞ ↔ ∃ 𝑘 ∈ 𝐴 ( vol ‘ ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ) = +∞ ) |
45 |
36 44
|
sylib |
⊢ ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛 ∈ 𝐴 𝐵 ) ∧ ∃ 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) = +∞ ) → ∃ 𝑘 ∈ 𝐴 ( vol ‘ ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ) = +∞ ) |
46 |
39
|
nfel1 |
⊢ Ⅎ 𝑛 ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ∈ dom vol |
47 |
42
|
eleq1d |
⊢ ( 𝑛 = 𝑘 → ( 𝐵 ∈ dom vol ↔ ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ∈ dom vol ) ) |
48 |
46 47
|
rspc |
⊢ ( 𝑘 ∈ 𝐴 → ( ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol → ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ∈ dom vol ) ) |
49 |
48
|
impcom |
⊢ ( ( ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ∧ 𝑘 ∈ 𝐴 ) → ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ∈ dom vol ) |
50 |
49
|
adantll |
⊢ ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ) ∧ 𝑘 ∈ 𝐴 ) → ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ∈ dom vol ) |
51 |
|
finiunmbl |
⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ) → ∪ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ) |
52 |
51
|
adantr |
⊢ ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ) ∧ 𝑘 ∈ 𝐴 ) → ∪ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ) |
53 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑘 |
54 |
9 53 39 42
|
ssiun2sf |
⊢ ( 𝑘 ∈ 𝐴 → ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ⊆ ∪ 𝑛 ∈ 𝐴 𝐵 ) |
55 |
54
|
adantl |
⊢ ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ) ∧ 𝑘 ∈ 𝐴 ) → ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ⊆ ∪ 𝑛 ∈ 𝐴 𝐵 ) |
56 |
|
volss |
⊢ ( ( ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ∈ dom vol ∧ ∪ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ∧ ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ⊆ ∪ 𝑛 ∈ 𝐴 𝐵 ) → ( vol ‘ ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ) ≤ ( vol ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) ) |
57 |
50 52 55 56
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ) ∧ 𝑘 ∈ 𝐴 ) → ( vol ‘ ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ) ≤ ( vol ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) ) |
58 |
57
|
3adantl3 |
⊢ ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛 ∈ 𝐴 𝐵 ) ∧ 𝑘 ∈ 𝐴 ) → ( vol ‘ ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ) ≤ ( vol ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) ) |
59 |
58
|
adantlr |
⊢ ( ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛 ∈ 𝐴 𝐵 ) ∧ ∃ 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) = +∞ ) ∧ 𝑘 ∈ 𝐴 ) → ( vol ‘ ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ) ≤ ( vol ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) ) |
60 |
59
|
ralrimiva |
⊢ ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛 ∈ 𝐴 𝐵 ) ∧ ∃ 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) = +∞ ) → ∀ 𝑘 ∈ 𝐴 ( vol ‘ ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ) ≤ ( vol ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) ) |
61 |
|
r19.29r |
⊢ ( ( ∃ 𝑘 ∈ 𝐴 ( vol ‘ ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ) = +∞ ∧ ∀ 𝑘 ∈ 𝐴 ( vol ‘ ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ) ≤ ( vol ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) ) → ∃ 𝑘 ∈ 𝐴 ( ( vol ‘ ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ) = +∞ ∧ ( vol ‘ ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ) ≤ ( vol ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) ) ) |
62 |
45 60 61
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛 ∈ 𝐴 𝐵 ) ∧ ∃ 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) = +∞ ) → ∃ 𝑘 ∈ 𝐴 ( ( vol ‘ ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ) = +∞ ∧ ( vol ‘ ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ) ≤ ( vol ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) ) ) |
63 |
|
breq1 |
⊢ ( ( vol ‘ ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ) = +∞ → ( ( vol ‘ ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ) ≤ ( vol ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) ↔ +∞ ≤ ( vol ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) ) ) |
64 |
63
|
biimpa |
⊢ ( ( ( vol ‘ ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ) = +∞ ∧ ( vol ‘ ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ) ≤ ( vol ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) ) → +∞ ≤ ( vol ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) ) |
65 |
64
|
reximi |
⊢ ( ∃ 𝑘 ∈ 𝐴 ( ( vol ‘ ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ) = +∞ ∧ ( vol ‘ ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ) ≤ ( vol ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) ) → ∃ 𝑘 ∈ 𝐴 +∞ ≤ ( vol ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) ) |
66 |
62 65
|
syl |
⊢ ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛 ∈ 𝐴 𝐵 ) ∧ ∃ 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) = +∞ ) → ∃ 𝑘 ∈ 𝐴 +∞ ≤ ( vol ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) ) |
67 |
|
rexex |
⊢ ( ∃ 𝑘 ∈ 𝐴 +∞ ≤ ( vol ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) → ∃ 𝑘 +∞ ≤ ( vol ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) ) |
68 |
|
19.9v |
⊢ ( ∃ 𝑘 +∞ ≤ ( vol ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) ↔ +∞ ≤ ( vol ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) ) |
69 |
67 68
|
sylib |
⊢ ( ∃ 𝑘 ∈ 𝐴 +∞ ≤ ( vol ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) → +∞ ≤ ( vol ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) ) |
70 |
66 69
|
syl |
⊢ ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛 ∈ 𝐴 𝐵 ) ∧ ∃ 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) = +∞ ) → +∞ ≤ ( vol ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) ) |
71 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
72 |
18
|
ffvelrni |
⊢ ( ∪ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol → ( vol ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) ∈ ( 0 [,] +∞ ) ) |
73 |
71 72
|
sselid |
⊢ ( ∪ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol → ( vol ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) ∈ ℝ* ) |
74 |
51 73
|
syl |
⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ) → ( vol ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) ∈ ℝ* ) |
75 |
74
|
3adant3 |
⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛 ∈ 𝐴 𝐵 ) → ( vol ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) ∈ ℝ* ) |
76 |
75
|
adantr |
⊢ ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛 ∈ 𝐴 𝐵 ) ∧ ∃ 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) = +∞ ) → ( vol ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) ∈ ℝ* ) |
77 |
|
xgepnf |
⊢ ( ( vol ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) ∈ ℝ* → ( +∞ ≤ ( vol ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) ↔ ( vol ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) = +∞ ) ) |
78 |
76 77
|
syl |
⊢ ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛 ∈ 𝐴 𝐵 ) ∧ ∃ 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) = +∞ ) → ( +∞ ≤ ( vol ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) ↔ ( vol ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) = +∞ ) ) |
79 |
70 78
|
mpbid |
⊢ ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛 ∈ 𝐴 𝐵 ) ∧ ∃ 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) = +∞ ) → ( vol ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) = +∞ ) |
80 |
|
nfre1 |
⊢ Ⅎ 𝑛 ∃ 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) = +∞ |
81 |
13 80
|
nfan |
⊢ Ⅎ 𝑛 ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛 ∈ 𝐴 𝐵 ) ∧ ∃ 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) = +∞ ) |
82 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛 ∈ 𝐴 𝐵 ) ∧ ∃ 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) = +∞ ) → 𝐴 ∈ Fin ) |
83 |
20
|
3ad2antl2 |
⊢ ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛 ∈ 𝐴 𝐵 ) ∧ 𝑛 ∈ 𝐴 ) → ( vol ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) ) |
84 |
83
|
adantlr |
⊢ ( ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛 ∈ 𝐴 𝐵 ) ∧ ∃ 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) = +∞ ) ∧ 𝑛 ∈ 𝐴 ) → ( vol ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) ) |
85 |
81 82 84 36
|
esumpinfval |
⊢ ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛 ∈ 𝐴 𝐵 ) ∧ ∃ 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) = +∞ ) → Σ* 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) = +∞ ) |
86 |
79 85
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛 ∈ 𝐴 𝐵 ) ∧ ∃ 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) = +∞ ) → ( vol ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) = Σ* 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) ) |
87 |
|
exmid |
⊢ ( ∀ 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) ∈ ℝ ∨ ¬ ∀ 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) ∈ ℝ ) |
88 |
|
rexnal |
⊢ ( ∃ 𝑛 ∈ 𝐴 ¬ ( vol ‘ 𝐵 ) ∈ ℝ ↔ ¬ ∀ 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) ∈ ℝ ) |
89 |
88
|
orbi2i |
⊢ ( ( ∀ 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) ∈ ℝ ∨ ∃ 𝑛 ∈ 𝐴 ¬ ( vol ‘ 𝐵 ) ∈ ℝ ) ↔ ( ∀ 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) ∈ ℝ ∨ ¬ ∀ 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) ∈ ℝ ) ) |
90 |
87 89
|
mpbir |
⊢ ( ∀ 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) ∈ ℝ ∨ ∃ 𝑛 ∈ 𝐴 ¬ ( vol ‘ 𝐵 ) ∈ ℝ ) |
91 |
|
r19.29 |
⊢ ( ( ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ∧ ∃ 𝑛 ∈ 𝐴 ¬ ( vol ‘ 𝐵 ) ∈ ℝ ) → ∃ 𝑛 ∈ 𝐴 ( 𝐵 ∈ dom vol ∧ ¬ ( vol ‘ 𝐵 ) ∈ ℝ ) ) |
92 |
|
xrge0nre |
⊢ ( ( ( vol ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) ∧ ¬ ( vol ‘ 𝐵 ) ∈ ℝ ) → ( vol ‘ 𝐵 ) = +∞ ) |
93 |
19 92
|
sylan |
⊢ ( ( 𝐵 ∈ dom vol ∧ ¬ ( vol ‘ 𝐵 ) ∈ ℝ ) → ( vol ‘ 𝐵 ) = +∞ ) |
94 |
93
|
reximi |
⊢ ( ∃ 𝑛 ∈ 𝐴 ( 𝐵 ∈ dom vol ∧ ¬ ( vol ‘ 𝐵 ) ∈ ℝ ) → ∃ 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) = +∞ ) |
95 |
91 94
|
syl |
⊢ ( ( ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ∧ ∃ 𝑛 ∈ 𝐴 ¬ ( vol ‘ 𝐵 ) ∈ ℝ ) → ∃ 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) = +∞ ) |
96 |
95
|
ex |
⊢ ( ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol → ( ∃ 𝑛 ∈ 𝐴 ¬ ( vol ‘ 𝐵 ) ∈ ℝ → ∃ 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) = +∞ ) ) |
97 |
96
|
orim2d |
⊢ ( ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol → ( ( ∀ 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) ∈ ℝ ∨ ∃ 𝑛 ∈ 𝐴 ¬ ( vol ‘ 𝐵 ) ∈ ℝ ) → ( ∀ 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) ∈ ℝ ∨ ∃ 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) = +∞ ) ) ) |
98 |
90 97
|
mpi |
⊢ ( ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol → ( ∀ 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) ∈ ℝ ∨ ∃ 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) = +∞ ) ) |
99 |
98
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛 ∈ 𝐴 𝐵 ) → ( ∀ 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) ∈ ℝ ∨ ∃ 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) = +∞ ) ) |
100 |
35 86 99
|
mpjaodan |
⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛 ∈ 𝐴 𝐵 ) → ( vol ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) = Σ* 𝑛 ∈ 𝐴 ( vol ‘ 𝐵 ) ) |