| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl1 | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol  ∧  Disj  𝑛  ∈  𝐴 𝐵 )  ∧  ∀ 𝑛  ∈  𝐴 ( vol ‘ 𝐵 )  ∈  ℝ )  →  𝐴  ∈  Fin ) | 
						
							| 2 |  | simpl2 | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol  ∧  Disj  𝑛  ∈  𝐴 𝐵 )  ∧  ∀ 𝑛  ∈  𝐴 ( vol ‘ 𝐵 )  ∈  ℝ )  →  ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol ) | 
						
							| 3 |  | simpr | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol  ∧  Disj  𝑛  ∈  𝐴 𝐵 )  ∧  ∀ 𝑛  ∈  𝐴 ( vol ‘ 𝐵 )  ∈  ℝ )  →  ∀ 𝑛  ∈  𝐴 ( vol ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 4 |  | r19.26 | ⊢ ( ∀ 𝑛  ∈  𝐴 ( 𝐵  ∈  dom  vol  ∧  ( vol ‘ 𝐵 )  ∈  ℝ )  ↔  ( ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol  ∧  ∀ 𝑛  ∈  𝐴 ( vol ‘ 𝐵 )  ∈  ℝ ) ) | 
						
							| 5 | 2 3 4 | sylanbrc | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol  ∧  Disj  𝑛  ∈  𝐴 𝐵 )  ∧  ∀ 𝑛  ∈  𝐴 ( vol ‘ 𝐵 )  ∈  ℝ )  →  ∀ 𝑛  ∈  𝐴 ( 𝐵  ∈  dom  vol  ∧  ( vol ‘ 𝐵 )  ∈  ℝ ) ) | 
						
							| 6 |  | simpl3 | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol  ∧  Disj  𝑛  ∈  𝐴 𝐵 )  ∧  ∀ 𝑛  ∈  𝐴 ( vol ‘ 𝐵 )  ∈  ℝ )  →  Disj  𝑛  ∈  𝐴 𝐵 ) | 
						
							| 7 |  | volfiniun | ⊢ ( ( 𝐴  ∈  Fin  ∧  ∀ 𝑛  ∈  𝐴 ( 𝐵  ∈  dom  vol  ∧  ( vol ‘ 𝐵 )  ∈  ℝ )  ∧  Disj  𝑛  ∈  𝐴 𝐵 )  →  ( vol ‘ ∪  𝑛  ∈  𝐴 𝐵 )  =  Σ 𝑛  ∈  𝐴 ( vol ‘ 𝐵 ) ) | 
						
							| 8 | 1 5 6 7 | syl3anc | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol  ∧  Disj  𝑛  ∈  𝐴 𝐵 )  ∧  ∀ 𝑛  ∈  𝐴 ( vol ‘ 𝐵 )  ∈  ℝ )  →  ( vol ‘ ∪  𝑛  ∈  𝐴 𝐵 )  =  Σ 𝑛  ∈  𝐴 ( vol ‘ 𝐵 ) ) | 
						
							| 9 |  | nfcv | ⊢ Ⅎ 𝑛 𝐴 | 
						
							| 10 | 9 | nfel1 | ⊢ Ⅎ 𝑛 𝐴  ∈  Fin | 
						
							| 11 |  | nfra1 | ⊢ Ⅎ 𝑛 ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol | 
						
							| 12 |  | nfdisj1 | ⊢ Ⅎ 𝑛 Disj  𝑛  ∈  𝐴 𝐵 | 
						
							| 13 | 10 11 12 | nf3an | ⊢ Ⅎ 𝑛 ( 𝐴  ∈  Fin  ∧  ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol  ∧  Disj  𝑛  ∈  𝐴 𝐵 ) | 
						
							| 14 |  | nfra1 | ⊢ Ⅎ 𝑛 ∀ 𝑛  ∈  𝐴 ( vol ‘ 𝐵 )  ∈  ℝ | 
						
							| 15 | 13 14 | nfan | ⊢ Ⅎ 𝑛 ( ( 𝐴  ∈  Fin  ∧  ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol  ∧  Disj  𝑛  ∈  𝐴 𝐵 )  ∧  ∀ 𝑛  ∈  𝐴 ( vol ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 16 | 3 | r19.21bi | ⊢ ( ( ( ( 𝐴  ∈  Fin  ∧  ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol  ∧  Disj  𝑛  ∈  𝐴 𝐵 )  ∧  ∀ 𝑛  ∈  𝐴 ( vol ‘ 𝐵 )  ∈  ℝ )  ∧  𝑛  ∈  𝐴 )  →  ( vol ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 17 |  | rspa | ⊢ ( ( ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol  ∧  𝑛  ∈  𝐴 )  →  𝐵  ∈  dom  vol ) | 
						
							| 18 |  | volf | ⊢ vol : dom  vol ⟶ ( 0 [,] +∞ ) | 
						
							| 19 | 18 | ffvelcdmi | ⊢ ( 𝐵  ∈  dom  vol  →  ( vol ‘ 𝐵 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 20 | 17 19 | syl | ⊢ ( ( ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol  ∧  𝑛  ∈  𝐴 )  →  ( vol ‘ 𝐵 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 21 | 2 20 | sylan | ⊢ ( ( ( ( 𝐴  ∈  Fin  ∧  ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol  ∧  Disj  𝑛  ∈  𝐴 𝐵 )  ∧  ∀ 𝑛  ∈  𝐴 ( vol ‘ 𝐵 )  ∈  ℝ )  ∧  𝑛  ∈  𝐴 )  →  ( vol ‘ 𝐵 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 22 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 23 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 24 |  | elicc1 | ⊢ ( ( 0  ∈  ℝ*  ∧  +∞  ∈  ℝ* )  →  ( ( vol ‘ 𝐵 )  ∈  ( 0 [,] +∞ )  ↔  ( ( vol ‘ 𝐵 )  ∈  ℝ*  ∧  0  ≤  ( vol ‘ 𝐵 )  ∧  ( vol ‘ 𝐵 )  ≤  +∞ ) ) ) | 
						
							| 25 | 22 23 24 | mp2an | ⊢ ( ( vol ‘ 𝐵 )  ∈  ( 0 [,] +∞ )  ↔  ( ( vol ‘ 𝐵 )  ∈  ℝ*  ∧  0  ≤  ( vol ‘ 𝐵 )  ∧  ( vol ‘ 𝐵 )  ≤  +∞ ) ) | 
						
							| 26 | 25 | simp2bi | ⊢ ( ( vol ‘ 𝐵 )  ∈  ( 0 [,] +∞ )  →  0  ≤  ( vol ‘ 𝐵 ) ) | 
						
							| 27 | 21 26 | syl | ⊢ ( ( ( ( 𝐴  ∈  Fin  ∧  ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol  ∧  Disj  𝑛  ∈  𝐴 𝐵 )  ∧  ∀ 𝑛  ∈  𝐴 ( vol ‘ 𝐵 )  ∈  ℝ )  ∧  𝑛  ∈  𝐴 )  →  0  ≤  ( vol ‘ 𝐵 ) ) | 
						
							| 28 |  | ltpnf | ⊢ ( ( vol ‘ 𝐵 )  ∈  ℝ  →  ( vol ‘ 𝐵 )  <  +∞ ) | 
						
							| 29 | 16 28 | syl | ⊢ ( ( ( ( 𝐴  ∈  Fin  ∧  ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol  ∧  Disj  𝑛  ∈  𝐴 𝐵 )  ∧  ∀ 𝑛  ∈  𝐴 ( vol ‘ 𝐵 )  ∈  ℝ )  ∧  𝑛  ∈  𝐴 )  →  ( vol ‘ 𝐵 )  <  +∞ ) | 
						
							| 30 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 31 |  | elico2 | ⊢ ( ( 0  ∈  ℝ  ∧  +∞  ∈  ℝ* )  →  ( ( vol ‘ 𝐵 )  ∈  ( 0 [,) +∞ )  ↔  ( ( vol ‘ 𝐵 )  ∈  ℝ  ∧  0  ≤  ( vol ‘ 𝐵 )  ∧  ( vol ‘ 𝐵 )  <  +∞ ) ) ) | 
						
							| 32 | 30 23 31 | mp2an | ⊢ ( ( vol ‘ 𝐵 )  ∈  ( 0 [,) +∞ )  ↔  ( ( vol ‘ 𝐵 )  ∈  ℝ  ∧  0  ≤  ( vol ‘ 𝐵 )  ∧  ( vol ‘ 𝐵 )  <  +∞ ) ) | 
						
							| 33 | 16 27 29 32 | syl3anbrc | ⊢ ( ( ( ( 𝐴  ∈  Fin  ∧  ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol  ∧  Disj  𝑛  ∈  𝐴 𝐵 )  ∧  ∀ 𝑛  ∈  𝐴 ( vol ‘ 𝐵 )  ∈  ℝ )  ∧  𝑛  ∈  𝐴 )  →  ( vol ‘ 𝐵 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 34 | 9 15 1 33 | esumpfinvalf | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol  ∧  Disj  𝑛  ∈  𝐴 𝐵 )  ∧  ∀ 𝑛  ∈  𝐴 ( vol ‘ 𝐵 )  ∈  ℝ )  →  Σ* 𝑛  ∈  𝐴 ( vol ‘ 𝐵 )  =  Σ 𝑛  ∈  𝐴 ( vol ‘ 𝐵 ) ) | 
						
							| 35 | 8 34 | eqtr4d | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol  ∧  Disj  𝑛  ∈  𝐴 𝐵 )  ∧  ∀ 𝑛  ∈  𝐴 ( vol ‘ 𝐵 )  ∈  ℝ )  →  ( vol ‘ ∪  𝑛  ∈  𝐴 𝐵 )  =  Σ* 𝑛  ∈  𝐴 ( vol ‘ 𝐵 ) ) | 
						
							| 36 |  | simpr | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol  ∧  Disj  𝑛  ∈  𝐴 𝐵 )  ∧  ∃ 𝑛  ∈  𝐴 ( vol ‘ 𝐵 )  =  +∞ )  →  ∃ 𝑛  ∈  𝐴 ( vol ‘ 𝐵 )  =  +∞ ) | 
						
							| 37 |  | nfv | ⊢ Ⅎ 𝑘 ( vol ‘ 𝐵 )  =  +∞ | 
						
							| 38 |  | nfcv | ⊢ Ⅎ 𝑛 vol | 
						
							| 39 |  | nfcsb1v | ⊢ Ⅎ 𝑛 ⦋ 𝑘  /  𝑛 ⦌ 𝐵 | 
						
							| 40 | 38 39 | nffv | ⊢ Ⅎ 𝑛 ( vol ‘ ⦋ 𝑘  /  𝑛 ⦌ 𝐵 ) | 
						
							| 41 | 40 | nfeq1 | ⊢ Ⅎ 𝑛 ( vol ‘ ⦋ 𝑘  /  𝑛 ⦌ 𝐵 )  =  +∞ | 
						
							| 42 |  | csbeq1a | ⊢ ( 𝑛  =  𝑘  →  𝐵  =  ⦋ 𝑘  /  𝑛 ⦌ 𝐵 ) | 
						
							| 43 | 42 | fveqeq2d | ⊢ ( 𝑛  =  𝑘  →  ( ( vol ‘ 𝐵 )  =  +∞  ↔  ( vol ‘ ⦋ 𝑘  /  𝑛 ⦌ 𝐵 )  =  +∞ ) ) | 
						
							| 44 | 37 41 43 | cbvrexw | ⊢ ( ∃ 𝑛  ∈  𝐴 ( vol ‘ 𝐵 )  =  +∞  ↔  ∃ 𝑘  ∈  𝐴 ( vol ‘ ⦋ 𝑘  /  𝑛 ⦌ 𝐵 )  =  +∞ ) | 
						
							| 45 | 36 44 | sylib | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol  ∧  Disj  𝑛  ∈  𝐴 𝐵 )  ∧  ∃ 𝑛  ∈  𝐴 ( vol ‘ 𝐵 )  =  +∞ )  →  ∃ 𝑘  ∈  𝐴 ( vol ‘ ⦋ 𝑘  /  𝑛 ⦌ 𝐵 )  =  +∞ ) | 
						
							| 46 | 39 | nfel1 | ⊢ Ⅎ 𝑛 ⦋ 𝑘  /  𝑛 ⦌ 𝐵  ∈  dom  vol | 
						
							| 47 | 42 | eleq1d | ⊢ ( 𝑛  =  𝑘  →  ( 𝐵  ∈  dom  vol  ↔  ⦋ 𝑘  /  𝑛 ⦌ 𝐵  ∈  dom  vol ) ) | 
						
							| 48 | 46 47 | rspc | ⊢ ( 𝑘  ∈  𝐴  →  ( ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol  →  ⦋ 𝑘  /  𝑛 ⦌ 𝐵  ∈  dom  vol ) ) | 
						
							| 49 | 48 | impcom | ⊢ ( ( ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol  ∧  𝑘  ∈  𝐴 )  →  ⦋ 𝑘  /  𝑛 ⦌ 𝐵  ∈  dom  vol ) | 
						
							| 50 | 49 | adantll | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol )  ∧  𝑘  ∈  𝐴 )  →  ⦋ 𝑘  /  𝑛 ⦌ 𝐵  ∈  dom  vol ) | 
						
							| 51 |  | finiunmbl | ⊢ ( ( 𝐴  ∈  Fin  ∧  ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol )  →  ∪  𝑛  ∈  𝐴 𝐵  ∈  dom  vol ) | 
						
							| 52 | 51 | adantr | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol )  ∧  𝑘  ∈  𝐴 )  →  ∪  𝑛  ∈  𝐴 𝐵  ∈  dom  vol ) | 
						
							| 53 |  | nfcv | ⊢ Ⅎ 𝑛 𝑘 | 
						
							| 54 | 9 53 39 42 | ssiun2sf | ⊢ ( 𝑘  ∈  𝐴  →  ⦋ 𝑘  /  𝑛 ⦌ 𝐵  ⊆  ∪  𝑛  ∈  𝐴 𝐵 ) | 
						
							| 55 | 54 | adantl | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol )  ∧  𝑘  ∈  𝐴 )  →  ⦋ 𝑘  /  𝑛 ⦌ 𝐵  ⊆  ∪  𝑛  ∈  𝐴 𝐵 ) | 
						
							| 56 |  | volss | ⊢ ( ( ⦋ 𝑘  /  𝑛 ⦌ 𝐵  ∈  dom  vol  ∧  ∪  𝑛  ∈  𝐴 𝐵  ∈  dom  vol  ∧  ⦋ 𝑘  /  𝑛 ⦌ 𝐵  ⊆  ∪  𝑛  ∈  𝐴 𝐵 )  →  ( vol ‘ ⦋ 𝑘  /  𝑛 ⦌ 𝐵 )  ≤  ( vol ‘ ∪  𝑛  ∈  𝐴 𝐵 ) ) | 
						
							| 57 | 50 52 55 56 | syl3anc | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol )  ∧  𝑘  ∈  𝐴 )  →  ( vol ‘ ⦋ 𝑘  /  𝑛 ⦌ 𝐵 )  ≤  ( vol ‘ ∪  𝑛  ∈  𝐴 𝐵 ) ) | 
						
							| 58 | 57 | 3adantl3 | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol  ∧  Disj  𝑛  ∈  𝐴 𝐵 )  ∧  𝑘  ∈  𝐴 )  →  ( vol ‘ ⦋ 𝑘  /  𝑛 ⦌ 𝐵 )  ≤  ( vol ‘ ∪  𝑛  ∈  𝐴 𝐵 ) ) | 
						
							| 59 | 58 | adantlr | ⊢ ( ( ( ( 𝐴  ∈  Fin  ∧  ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol  ∧  Disj  𝑛  ∈  𝐴 𝐵 )  ∧  ∃ 𝑛  ∈  𝐴 ( vol ‘ 𝐵 )  =  +∞ )  ∧  𝑘  ∈  𝐴 )  →  ( vol ‘ ⦋ 𝑘  /  𝑛 ⦌ 𝐵 )  ≤  ( vol ‘ ∪  𝑛  ∈  𝐴 𝐵 ) ) | 
						
							| 60 | 59 | ralrimiva | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol  ∧  Disj  𝑛  ∈  𝐴 𝐵 )  ∧  ∃ 𝑛  ∈  𝐴 ( vol ‘ 𝐵 )  =  +∞ )  →  ∀ 𝑘  ∈  𝐴 ( vol ‘ ⦋ 𝑘  /  𝑛 ⦌ 𝐵 )  ≤  ( vol ‘ ∪  𝑛  ∈  𝐴 𝐵 ) ) | 
						
							| 61 |  | r19.29r | ⊢ ( ( ∃ 𝑘  ∈  𝐴 ( vol ‘ ⦋ 𝑘  /  𝑛 ⦌ 𝐵 )  =  +∞  ∧  ∀ 𝑘  ∈  𝐴 ( vol ‘ ⦋ 𝑘  /  𝑛 ⦌ 𝐵 )  ≤  ( vol ‘ ∪  𝑛  ∈  𝐴 𝐵 ) )  →  ∃ 𝑘  ∈  𝐴 ( ( vol ‘ ⦋ 𝑘  /  𝑛 ⦌ 𝐵 )  =  +∞  ∧  ( vol ‘ ⦋ 𝑘  /  𝑛 ⦌ 𝐵 )  ≤  ( vol ‘ ∪  𝑛  ∈  𝐴 𝐵 ) ) ) | 
						
							| 62 | 45 60 61 | syl2anc | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol  ∧  Disj  𝑛  ∈  𝐴 𝐵 )  ∧  ∃ 𝑛  ∈  𝐴 ( vol ‘ 𝐵 )  =  +∞ )  →  ∃ 𝑘  ∈  𝐴 ( ( vol ‘ ⦋ 𝑘  /  𝑛 ⦌ 𝐵 )  =  +∞  ∧  ( vol ‘ ⦋ 𝑘  /  𝑛 ⦌ 𝐵 )  ≤  ( vol ‘ ∪  𝑛  ∈  𝐴 𝐵 ) ) ) | 
						
							| 63 |  | breq1 | ⊢ ( ( vol ‘ ⦋ 𝑘  /  𝑛 ⦌ 𝐵 )  =  +∞  →  ( ( vol ‘ ⦋ 𝑘  /  𝑛 ⦌ 𝐵 )  ≤  ( vol ‘ ∪  𝑛  ∈  𝐴 𝐵 )  ↔  +∞  ≤  ( vol ‘ ∪  𝑛  ∈  𝐴 𝐵 ) ) ) | 
						
							| 64 | 63 | biimpa | ⊢ ( ( ( vol ‘ ⦋ 𝑘  /  𝑛 ⦌ 𝐵 )  =  +∞  ∧  ( vol ‘ ⦋ 𝑘  /  𝑛 ⦌ 𝐵 )  ≤  ( vol ‘ ∪  𝑛  ∈  𝐴 𝐵 ) )  →  +∞  ≤  ( vol ‘ ∪  𝑛  ∈  𝐴 𝐵 ) ) | 
						
							| 65 | 64 | reximi | ⊢ ( ∃ 𝑘  ∈  𝐴 ( ( vol ‘ ⦋ 𝑘  /  𝑛 ⦌ 𝐵 )  =  +∞  ∧  ( vol ‘ ⦋ 𝑘  /  𝑛 ⦌ 𝐵 )  ≤  ( vol ‘ ∪  𝑛  ∈  𝐴 𝐵 ) )  →  ∃ 𝑘  ∈  𝐴 +∞  ≤  ( vol ‘ ∪  𝑛  ∈  𝐴 𝐵 ) ) | 
						
							| 66 | 62 65 | syl | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol  ∧  Disj  𝑛  ∈  𝐴 𝐵 )  ∧  ∃ 𝑛  ∈  𝐴 ( vol ‘ 𝐵 )  =  +∞ )  →  ∃ 𝑘  ∈  𝐴 +∞  ≤  ( vol ‘ ∪  𝑛  ∈  𝐴 𝐵 ) ) | 
						
							| 67 |  | rexex | ⊢ ( ∃ 𝑘  ∈  𝐴 +∞  ≤  ( vol ‘ ∪  𝑛  ∈  𝐴 𝐵 )  →  ∃ 𝑘 +∞  ≤  ( vol ‘ ∪  𝑛  ∈  𝐴 𝐵 ) ) | 
						
							| 68 |  | 19.9v | ⊢ ( ∃ 𝑘 +∞  ≤  ( vol ‘ ∪  𝑛  ∈  𝐴 𝐵 )  ↔  +∞  ≤  ( vol ‘ ∪  𝑛  ∈  𝐴 𝐵 ) ) | 
						
							| 69 | 67 68 | sylib | ⊢ ( ∃ 𝑘  ∈  𝐴 +∞  ≤  ( vol ‘ ∪  𝑛  ∈  𝐴 𝐵 )  →  +∞  ≤  ( vol ‘ ∪  𝑛  ∈  𝐴 𝐵 ) ) | 
						
							| 70 | 66 69 | syl | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol  ∧  Disj  𝑛  ∈  𝐴 𝐵 )  ∧  ∃ 𝑛  ∈  𝐴 ( vol ‘ 𝐵 )  =  +∞ )  →  +∞  ≤  ( vol ‘ ∪  𝑛  ∈  𝐴 𝐵 ) ) | 
						
							| 71 |  | iccssxr | ⊢ ( 0 [,] +∞ )  ⊆  ℝ* | 
						
							| 72 | 18 | ffvelcdmi | ⊢ ( ∪  𝑛  ∈  𝐴 𝐵  ∈  dom  vol  →  ( vol ‘ ∪  𝑛  ∈  𝐴 𝐵 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 73 | 71 72 | sselid | ⊢ ( ∪  𝑛  ∈  𝐴 𝐵  ∈  dom  vol  →  ( vol ‘ ∪  𝑛  ∈  𝐴 𝐵 )  ∈  ℝ* ) | 
						
							| 74 | 51 73 | syl | ⊢ ( ( 𝐴  ∈  Fin  ∧  ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol )  →  ( vol ‘ ∪  𝑛  ∈  𝐴 𝐵 )  ∈  ℝ* ) | 
						
							| 75 | 74 | 3adant3 | ⊢ ( ( 𝐴  ∈  Fin  ∧  ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol  ∧  Disj  𝑛  ∈  𝐴 𝐵 )  →  ( vol ‘ ∪  𝑛  ∈  𝐴 𝐵 )  ∈  ℝ* ) | 
						
							| 76 | 75 | adantr | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol  ∧  Disj  𝑛  ∈  𝐴 𝐵 )  ∧  ∃ 𝑛  ∈  𝐴 ( vol ‘ 𝐵 )  =  +∞ )  →  ( vol ‘ ∪  𝑛  ∈  𝐴 𝐵 )  ∈  ℝ* ) | 
						
							| 77 |  | xgepnf | ⊢ ( ( vol ‘ ∪  𝑛  ∈  𝐴 𝐵 )  ∈  ℝ*  →  ( +∞  ≤  ( vol ‘ ∪  𝑛  ∈  𝐴 𝐵 )  ↔  ( vol ‘ ∪  𝑛  ∈  𝐴 𝐵 )  =  +∞ ) ) | 
						
							| 78 | 76 77 | syl | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol  ∧  Disj  𝑛  ∈  𝐴 𝐵 )  ∧  ∃ 𝑛  ∈  𝐴 ( vol ‘ 𝐵 )  =  +∞ )  →  ( +∞  ≤  ( vol ‘ ∪  𝑛  ∈  𝐴 𝐵 )  ↔  ( vol ‘ ∪  𝑛  ∈  𝐴 𝐵 )  =  +∞ ) ) | 
						
							| 79 | 70 78 | mpbid | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol  ∧  Disj  𝑛  ∈  𝐴 𝐵 )  ∧  ∃ 𝑛  ∈  𝐴 ( vol ‘ 𝐵 )  =  +∞ )  →  ( vol ‘ ∪  𝑛  ∈  𝐴 𝐵 )  =  +∞ ) | 
						
							| 80 |  | nfre1 | ⊢ Ⅎ 𝑛 ∃ 𝑛  ∈  𝐴 ( vol ‘ 𝐵 )  =  +∞ | 
						
							| 81 | 13 80 | nfan | ⊢ Ⅎ 𝑛 ( ( 𝐴  ∈  Fin  ∧  ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol  ∧  Disj  𝑛  ∈  𝐴 𝐵 )  ∧  ∃ 𝑛  ∈  𝐴 ( vol ‘ 𝐵 )  =  +∞ ) | 
						
							| 82 |  | simpl1 | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol  ∧  Disj  𝑛  ∈  𝐴 𝐵 )  ∧  ∃ 𝑛  ∈  𝐴 ( vol ‘ 𝐵 )  =  +∞ )  →  𝐴  ∈  Fin ) | 
						
							| 83 | 20 | 3ad2antl2 | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol  ∧  Disj  𝑛  ∈  𝐴 𝐵 )  ∧  𝑛  ∈  𝐴 )  →  ( vol ‘ 𝐵 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 84 | 83 | adantlr | ⊢ ( ( ( ( 𝐴  ∈  Fin  ∧  ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol  ∧  Disj  𝑛  ∈  𝐴 𝐵 )  ∧  ∃ 𝑛  ∈  𝐴 ( vol ‘ 𝐵 )  =  +∞ )  ∧  𝑛  ∈  𝐴 )  →  ( vol ‘ 𝐵 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 85 | 81 82 84 36 | esumpinfval | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol  ∧  Disj  𝑛  ∈  𝐴 𝐵 )  ∧  ∃ 𝑛  ∈  𝐴 ( vol ‘ 𝐵 )  =  +∞ )  →  Σ* 𝑛  ∈  𝐴 ( vol ‘ 𝐵 )  =  +∞ ) | 
						
							| 86 | 79 85 | eqtr4d | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol  ∧  Disj  𝑛  ∈  𝐴 𝐵 )  ∧  ∃ 𝑛  ∈  𝐴 ( vol ‘ 𝐵 )  =  +∞ )  →  ( vol ‘ ∪  𝑛  ∈  𝐴 𝐵 )  =  Σ* 𝑛  ∈  𝐴 ( vol ‘ 𝐵 ) ) | 
						
							| 87 |  | exmid | ⊢ ( ∀ 𝑛  ∈  𝐴 ( vol ‘ 𝐵 )  ∈  ℝ  ∨  ¬  ∀ 𝑛  ∈  𝐴 ( vol ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 88 |  | rexnal | ⊢ ( ∃ 𝑛  ∈  𝐴 ¬  ( vol ‘ 𝐵 )  ∈  ℝ  ↔  ¬  ∀ 𝑛  ∈  𝐴 ( vol ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 89 | 88 | orbi2i | ⊢ ( ( ∀ 𝑛  ∈  𝐴 ( vol ‘ 𝐵 )  ∈  ℝ  ∨  ∃ 𝑛  ∈  𝐴 ¬  ( vol ‘ 𝐵 )  ∈  ℝ )  ↔  ( ∀ 𝑛  ∈  𝐴 ( vol ‘ 𝐵 )  ∈  ℝ  ∨  ¬  ∀ 𝑛  ∈  𝐴 ( vol ‘ 𝐵 )  ∈  ℝ ) ) | 
						
							| 90 | 87 89 | mpbir | ⊢ ( ∀ 𝑛  ∈  𝐴 ( vol ‘ 𝐵 )  ∈  ℝ  ∨  ∃ 𝑛  ∈  𝐴 ¬  ( vol ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 91 |  | r19.29 | ⊢ ( ( ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol  ∧  ∃ 𝑛  ∈  𝐴 ¬  ( vol ‘ 𝐵 )  ∈  ℝ )  →  ∃ 𝑛  ∈  𝐴 ( 𝐵  ∈  dom  vol  ∧  ¬  ( vol ‘ 𝐵 )  ∈  ℝ ) ) | 
						
							| 92 |  | xrge0nre | ⊢ ( ( ( vol ‘ 𝐵 )  ∈  ( 0 [,] +∞ )  ∧  ¬  ( vol ‘ 𝐵 )  ∈  ℝ )  →  ( vol ‘ 𝐵 )  =  +∞ ) | 
						
							| 93 | 19 92 | sylan | ⊢ ( ( 𝐵  ∈  dom  vol  ∧  ¬  ( vol ‘ 𝐵 )  ∈  ℝ )  →  ( vol ‘ 𝐵 )  =  +∞ ) | 
						
							| 94 | 93 | reximi | ⊢ ( ∃ 𝑛  ∈  𝐴 ( 𝐵  ∈  dom  vol  ∧  ¬  ( vol ‘ 𝐵 )  ∈  ℝ )  →  ∃ 𝑛  ∈  𝐴 ( vol ‘ 𝐵 )  =  +∞ ) | 
						
							| 95 | 91 94 | syl | ⊢ ( ( ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol  ∧  ∃ 𝑛  ∈  𝐴 ¬  ( vol ‘ 𝐵 )  ∈  ℝ )  →  ∃ 𝑛  ∈  𝐴 ( vol ‘ 𝐵 )  =  +∞ ) | 
						
							| 96 | 95 | ex | ⊢ ( ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol  →  ( ∃ 𝑛  ∈  𝐴 ¬  ( vol ‘ 𝐵 )  ∈  ℝ  →  ∃ 𝑛  ∈  𝐴 ( vol ‘ 𝐵 )  =  +∞ ) ) | 
						
							| 97 | 96 | orim2d | ⊢ ( ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol  →  ( ( ∀ 𝑛  ∈  𝐴 ( vol ‘ 𝐵 )  ∈  ℝ  ∨  ∃ 𝑛  ∈  𝐴 ¬  ( vol ‘ 𝐵 )  ∈  ℝ )  →  ( ∀ 𝑛  ∈  𝐴 ( vol ‘ 𝐵 )  ∈  ℝ  ∨  ∃ 𝑛  ∈  𝐴 ( vol ‘ 𝐵 )  =  +∞ ) ) ) | 
						
							| 98 | 90 97 | mpi | ⊢ ( ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol  →  ( ∀ 𝑛  ∈  𝐴 ( vol ‘ 𝐵 )  ∈  ℝ  ∨  ∃ 𝑛  ∈  𝐴 ( vol ‘ 𝐵 )  =  +∞ ) ) | 
						
							| 99 | 98 | 3ad2ant2 | ⊢ ( ( 𝐴  ∈  Fin  ∧  ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol  ∧  Disj  𝑛  ∈  𝐴 𝐵 )  →  ( ∀ 𝑛  ∈  𝐴 ( vol ‘ 𝐵 )  ∈  ℝ  ∨  ∃ 𝑛  ∈  𝐴 ( vol ‘ 𝐵 )  =  +∞ ) ) | 
						
							| 100 | 35 86 99 | mpjaodan | ⊢ ( ( 𝐴  ∈  Fin  ∧  ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol  ∧  Disj  𝑛  ∈  𝐴 𝐵 )  →  ( vol ‘ ∪  𝑛  ∈  𝐴 𝐵 )  =  Σ* 𝑛  ∈  𝐴 ( vol ‘ 𝐵 ) ) |