Step |
Hyp |
Ref |
Expression |
1 |
|
r19.26 |
⊢ ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ↔ ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ) ) |
2 |
|
eqid |
⊢ seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ 𝐴 ) ) ) = seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ 𝐴 ) ) ) |
3 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( vol ‘ 𝐴 ) ) = ( 𝑛 ∈ ℕ ↦ ( vol ‘ 𝐴 ) ) |
4 |
2 3
|
voliun |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → ( vol ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) = sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ 𝐴 ) ) ) , ℝ* , < ) ) |
5 |
1 4
|
sylanbr |
⊢ ( ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → ( vol ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) = sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ 𝐴 ) ) ) , ℝ* , < ) ) |
6 |
5
|
an32s |
⊢ ( ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴 ) ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ) → ( vol ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) = sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ 𝐴 ) ) ) , ℝ* , < ) ) |
7 |
|
nfra1 |
⊢ Ⅎ 𝑛 ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol |
8 |
|
nfra1 |
⊢ Ⅎ 𝑛 ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ |
9 |
7 8
|
nfan |
⊢ Ⅎ 𝑛 ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ) |
10 |
|
simpr |
⊢ ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ ) |
11 |
|
rspa |
⊢ ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑛 ∈ ℕ ) → 𝐴 ∈ dom vol ) |
12 |
|
volf |
⊢ vol : dom vol ⟶ ( 0 [,] +∞ ) |
13 |
12
|
ffvelrni |
⊢ ( 𝐴 ∈ dom vol → ( vol ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) |
14 |
11 13
|
syl |
⊢ ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑛 ∈ ℕ ) → ( vol ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) |
15 |
3
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( vol ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) → ( ( 𝑛 ∈ ℕ ↦ ( vol ‘ 𝐴 ) ) ‘ 𝑛 ) = ( vol ‘ 𝐴 ) ) |
16 |
10 14 15
|
syl2anc |
⊢ ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑛 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( vol ‘ 𝐴 ) ) ‘ 𝑛 ) = ( vol ‘ 𝐴 ) ) |
17 |
16
|
adantlr |
⊢ ( ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( vol ‘ 𝐴 ) ) ‘ 𝑛 ) = ( vol ‘ 𝐴 ) ) |
18 |
17
|
ex |
⊢ ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ) → ( 𝑛 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( vol ‘ 𝐴 ) ) ‘ 𝑛 ) = ( vol ‘ 𝐴 ) ) ) |
19 |
9 18
|
ralrimi |
⊢ ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ) → ∀ 𝑛 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( vol ‘ 𝐴 ) ) ‘ 𝑛 ) = ( vol ‘ 𝐴 ) ) |
20 |
9 19
|
esumeq2d |
⊢ ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ) → Σ* 𝑛 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( vol ‘ 𝐴 ) ) ‘ 𝑛 ) = Σ* 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ) |
21 |
|
simpr |
⊢ ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ) → ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ) |
22 |
21
|
r19.21bi |
⊢ ( ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → ( vol ‘ 𝐴 ) ∈ ℝ ) |
23 |
14
|
adantlr |
⊢ ( ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → ( vol ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) |
24 |
|
0xr |
⊢ 0 ∈ ℝ* |
25 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
26 |
|
elicc1 |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( vol ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ↔ ( ( vol ‘ 𝐴 ) ∈ ℝ* ∧ 0 ≤ ( vol ‘ 𝐴 ) ∧ ( vol ‘ 𝐴 ) ≤ +∞ ) ) ) |
27 |
24 25 26
|
mp2an |
⊢ ( ( vol ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ↔ ( ( vol ‘ 𝐴 ) ∈ ℝ* ∧ 0 ≤ ( vol ‘ 𝐴 ) ∧ ( vol ‘ 𝐴 ) ≤ +∞ ) ) |
28 |
27
|
simp2bi |
⊢ ( ( vol ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) → 0 ≤ ( vol ‘ 𝐴 ) ) |
29 |
23 28
|
syl |
⊢ ( ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → 0 ≤ ( vol ‘ 𝐴 ) ) |
30 |
|
ltpnf |
⊢ ( ( vol ‘ 𝐴 ) ∈ ℝ → ( vol ‘ 𝐴 ) < +∞ ) |
31 |
22 30
|
syl |
⊢ ( ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → ( vol ‘ 𝐴 ) < +∞ ) |
32 |
|
0re |
⊢ 0 ∈ ℝ |
33 |
|
elico2 |
⊢ ( ( 0 ∈ ℝ ∧ +∞ ∈ ℝ* ) → ( ( vol ‘ 𝐴 ) ∈ ( 0 [,) +∞ ) ↔ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( vol ‘ 𝐴 ) ∧ ( vol ‘ 𝐴 ) < +∞ ) ) ) |
34 |
32 25 33
|
mp2an |
⊢ ( ( vol ‘ 𝐴 ) ∈ ( 0 [,) +∞ ) ↔ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( vol ‘ 𝐴 ) ∧ ( vol ‘ 𝐴 ) < +∞ ) ) |
35 |
22 29 31 34
|
syl3anbrc |
⊢ ( ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → ( vol ‘ 𝐴 ) ∈ ( 0 [,) +∞ ) ) |
36 |
9 35 3
|
fmptdf |
⊢ ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ) → ( 𝑛 ∈ ℕ ↦ ( vol ‘ 𝐴 ) ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
37 |
|
nfmpt1 |
⊢ Ⅎ 𝑛 ( 𝑛 ∈ ℕ ↦ ( vol ‘ 𝐴 ) ) |
38 |
37
|
esumfsupre |
⊢ ( ( 𝑛 ∈ ℕ ↦ ( vol ‘ 𝐴 ) ) : ℕ ⟶ ( 0 [,) +∞ ) → Σ* 𝑛 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( vol ‘ 𝐴 ) ) ‘ 𝑛 ) = sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ 𝐴 ) ) ) , ℝ* , < ) ) |
39 |
36 38
|
syl |
⊢ ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ) → Σ* 𝑛 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( vol ‘ 𝐴 ) ) ‘ 𝑛 ) = sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ 𝐴 ) ) ) , ℝ* , < ) ) |
40 |
20 39
|
eqtr3d |
⊢ ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ) → Σ* 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) = sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ 𝐴 ) ) ) , ℝ* , < ) ) |
41 |
40
|
adantlr |
⊢ ( ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴 ) ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ) → Σ* 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) = sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ 𝐴 ) ) ) , ℝ* , < ) ) |
42 |
6 41
|
eqtr4d |
⊢ ( ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴 ) ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ) → ( vol ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) = Σ* 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ) |
43 |
|
simpr |
⊢ ( ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴 ) ∧ ∃ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) = +∞ ) → ∃ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) = +∞ ) |
44 |
|
nfv |
⊢ Ⅎ 𝑘 ( vol ‘ 𝐴 ) = +∞ |
45 |
|
nfcv |
⊢ Ⅎ 𝑛 vol |
46 |
|
nfcsb1v |
⊢ Ⅎ 𝑛 ⦋ 𝑘 / 𝑛 ⦌ 𝐴 |
47 |
45 46
|
nffv |
⊢ Ⅎ 𝑛 ( vol ‘ ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ) |
48 |
47
|
nfeq1 |
⊢ Ⅎ 𝑛 ( vol ‘ ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ) = +∞ |
49 |
|
csbeq1a |
⊢ ( 𝑛 = 𝑘 → 𝐴 = ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ) |
50 |
49
|
fveqeq2d |
⊢ ( 𝑛 = 𝑘 → ( ( vol ‘ 𝐴 ) = +∞ ↔ ( vol ‘ ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ) = +∞ ) ) |
51 |
44 48 50
|
cbvrexw |
⊢ ( ∃ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) = +∞ ↔ ∃ 𝑘 ∈ ℕ ( vol ‘ ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ) = +∞ ) |
52 |
43 51
|
sylib |
⊢ ( ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴 ) ∧ ∃ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) = +∞ ) → ∃ 𝑘 ∈ ℕ ( vol ‘ ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ) = +∞ ) |
53 |
46
|
nfel1 |
⊢ Ⅎ 𝑛 ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ∈ dom vol |
54 |
49
|
eleq1d |
⊢ ( 𝑛 = 𝑘 → ( 𝐴 ∈ dom vol ↔ ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ∈ dom vol ) ) |
55 |
53 54
|
rspc |
⊢ ( 𝑘 ∈ ℕ → ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol → ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ∈ dom vol ) ) |
56 |
55
|
impcom |
⊢ ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑘 ∈ ℕ ) → ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ∈ dom vol ) |
57 |
|
iunmbl |
⊢ ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol → ∪ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ) |
58 |
57
|
adantr |
⊢ ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑘 ∈ ℕ ) → ∪ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ) |
59 |
|
nfcv |
⊢ Ⅎ 𝑛 ℕ |
60 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑘 |
61 |
59 60 46 49
|
ssiun2sf |
⊢ ( 𝑘 ∈ ℕ → ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ⊆ ∪ 𝑛 ∈ ℕ 𝐴 ) |
62 |
61
|
adantl |
⊢ ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑘 ∈ ℕ ) → ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ⊆ ∪ 𝑛 ∈ ℕ 𝐴 ) |
63 |
|
volss |
⊢ ( ( ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ∈ dom vol ∧ ∪ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ⊆ ∪ 𝑛 ∈ ℕ 𝐴 ) → ( vol ‘ ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ) ≤ ( vol ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) ) |
64 |
56 58 62 63
|
syl3anc |
⊢ ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑘 ∈ ℕ ) → ( vol ‘ ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ) ≤ ( vol ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) ) |
65 |
64
|
adantlr |
⊢ ( ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( vol ‘ ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ) ≤ ( vol ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) ) |
66 |
65
|
adantlr |
⊢ ( ( ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴 ) ∧ ∃ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) = +∞ ) ∧ 𝑘 ∈ ℕ ) → ( vol ‘ ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ) ≤ ( vol ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) ) |
67 |
66
|
ralrimiva |
⊢ ( ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴 ) ∧ ∃ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) = +∞ ) → ∀ 𝑘 ∈ ℕ ( vol ‘ ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ) ≤ ( vol ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) ) |
68 |
|
r19.29r |
⊢ ( ( ∃ 𝑘 ∈ ℕ ( vol ‘ ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ) = +∞ ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ) ≤ ( vol ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) ) → ∃ 𝑘 ∈ ℕ ( ( vol ‘ ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ) = +∞ ∧ ( vol ‘ ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ) ≤ ( vol ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) ) ) |
69 |
52 67 68
|
syl2anc |
⊢ ( ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴 ) ∧ ∃ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) = +∞ ) → ∃ 𝑘 ∈ ℕ ( ( vol ‘ ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ) = +∞ ∧ ( vol ‘ ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ) ≤ ( vol ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) ) ) |
70 |
|
breq1 |
⊢ ( ( vol ‘ ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ) = +∞ → ( ( vol ‘ ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ) ≤ ( vol ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) ↔ +∞ ≤ ( vol ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) ) ) |
71 |
70
|
biimpa |
⊢ ( ( ( vol ‘ ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ) = +∞ ∧ ( vol ‘ ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ) ≤ ( vol ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) ) → +∞ ≤ ( vol ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) ) |
72 |
71
|
reximi |
⊢ ( ∃ 𝑘 ∈ ℕ ( ( vol ‘ ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ) = +∞ ∧ ( vol ‘ ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ) ≤ ( vol ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) ) → ∃ 𝑘 ∈ ℕ +∞ ≤ ( vol ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) ) |
73 |
69 72
|
syl |
⊢ ( ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴 ) ∧ ∃ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) = +∞ ) → ∃ 𝑘 ∈ ℕ +∞ ≤ ( vol ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) ) |
74 |
|
1nn |
⊢ 1 ∈ ℕ |
75 |
|
ne0i |
⊢ ( 1 ∈ ℕ → ℕ ≠ ∅ ) |
76 |
|
r19.9rzv |
⊢ ( ℕ ≠ ∅ → ( +∞ ≤ ( vol ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) ↔ ∃ 𝑘 ∈ ℕ +∞ ≤ ( vol ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) ) ) |
77 |
74 75 76
|
mp2b |
⊢ ( +∞ ≤ ( vol ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) ↔ ∃ 𝑘 ∈ ℕ +∞ ≤ ( vol ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) ) |
78 |
73 77
|
sylibr |
⊢ ( ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴 ) ∧ ∃ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) = +∞ ) → +∞ ≤ ( vol ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) ) |
79 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
80 |
12
|
ffvelrni |
⊢ ( ∪ 𝑛 ∈ ℕ 𝐴 ∈ dom vol → ( vol ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) ∈ ( 0 [,] +∞ ) ) |
81 |
79 80
|
sselid |
⊢ ( ∪ 𝑛 ∈ ℕ 𝐴 ∈ dom vol → ( vol ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) ∈ ℝ* ) |
82 |
57 81
|
syl |
⊢ ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol → ( vol ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) ∈ ℝ* ) |
83 |
82
|
ad2antrr |
⊢ ( ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴 ) ∧ ∃ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) = +∞ ) → ( vol ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) ∈ ℝ* ) |
84 |
|
xgepnf |
⊢ ( ( vol ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) ∈ ℝ* → ( +∞ ≤ ( vol ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) ↔ ( vol ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) = +∞ ) ) |
85 |
83 84
|
syl |
⊢ ( ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴 ) ∧ ∃ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) = +∞ ) → ( +∞ ≤ ( vol ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) ↔ ( vol ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) = +∞ ) ) |
86 |
78 85
|
mpbid |
⊢ ( ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴 ) ∧ ∃ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) = +∞ ) → ( vol ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) = +∞ ) |
87 |
|
nfdisj1 |
⊢ Ⅎ 𝑛 Disj 𝑛 ∈ ℕ 𝐴 |
88 |
7 87
|
nfan |
⊢ Ⅎ 𝑛 ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴 ) |
89 |
|
nfre1 |
⊢ Ⅎ 𝑛 ∃ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) = +∞ |
90 |
88 89
|
nfan |
⊢ Ⅎ 𝑛 ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴 ) ∧ ∃ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) = +∞ ) |
91 |
|
nnex |
⊢ ℕ ∈ V |
92 |
91
|
a1i |
⊢ ( ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴 ) ∧ ∃ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) = +∞ ) → ℕ ∈ V ) |
93 |
14
|
3ad2antr3 |
⊢ ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ( Disj 𝑛 ∈ ℕ 𝐴 ∧ ∃ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) = +∞ ∧ 𝑛 ∈ ℕ ) ) → ( vol ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) |
94 |
93
|
3anassrs |
⊢ ( ( ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴 ) ∧ ∃ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) = +∞ ) ∧ 𝑛 ∈ ℕ ) → ( vol ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) |
95 |
90 92 94 43
|
esumpinfval |
⊢ ( ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴 ) ∧ ∃ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) = +∞ ) → Σ* 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) = +∞ ) |
96 |
86 95
|
eqtr4d |
⊢ ( ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴 ) ∧ ∃ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) = +∞ ) → ( vol ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) = Σ* 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ) |
97 |
|
exmid |
⊢ ( ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ∨ ¬ ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ) |
98 |
|
rexnal |
⊢ ( ∃ 𝑛 ∈ ℕ ¬ ( vol ‘ 𝐴 ) ∈ ℝ ↔ ¬ ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ) |
99 |
98
|
orbi2i |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ∨ ∃ 𝑛 ∈ ℕ ¬ ( vol ‘ 𝐴 ) ∈ ℝ ) ↔ ( ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ∨ ¬ ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ) ) |
100 |
97 99
|
mpbir |
⊢ ( ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ∨ ∃ 𝑛 ∈ ℕ ¬ ( vol ‘ 𝐴 ) ∈ ℝ ) |
101 |
|
r19.29 |
⊢ ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∃ 𝑛 ∈ ℕ ¬ ( vol ‘ 𝐴 ) ∈ ℝ ) → ∃ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ¬ ( vol ‘ 𝐴 ) ∈ ℝ ) ) |
102 |
|
xrge0nre |
⊢ ( ( ( vol ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ∧ ¬ ( vol ‘ 𝐴 ) ∈ ℝ ) → ( vol ‘ 𝐴 ) = +∞ ) |
103 |
13 102
|
sylan |
⊢ ( ( 𝐴 ∈ dom vol ∧ ¬ ( vol ‘ 𝐴 ) ∈ ℝ ) → ( vol ‘ 𝐴 ) = +∞ ) |
104 |
103
|
reximi |
⊢ ( ∃ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ¬ ( vol ‘ 𝐴 ) ∈ ℝ ) → ∃ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) = +∞ ) |
105 |
101 104
|
syl |
⊢ ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∃ 𝑛 ∈ ℕ ¬ ( vol ‘ 𝐴 ) ∈ ℝ ) → ∃ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) = +∞ ) |
106 |
105
|
ex |
⊢ ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol → ( ∃ 𝑛 ∈ ℕ ¬ ( vol ‘ 𝐴 ) ∈ ℝ → ∃ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) = +∞ ) ) |
107 |
106
|
orim2d |
⊢ ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol → ( ( ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ∨ ∃ 𝑛 ∈ ℕ ¬ ( vol ‘ 𝐴 ) ∈ ℝ ) → ( ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ∨ ∃ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) = +∞ ) ) ) |
108 |
100 107
|
mpi |
⊢ ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol → ( ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ∨ ∃ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) = +∞ ) ) |
109 |
108
|
adantr |
⊢ ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → ( ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ∨ ∃ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) = +∞ ) ) |
110 |
42 96 109
|
mpjaodan |
⊢ ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → ( vol ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) = Σ* 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ) |