Metamath Proof Explorer


Theorem voliune

Description: The Lebesgue measure function is countably additive. This formulation on the extended reals, allows for +oo for the measure of any set in the sum. Cf. ovoliun and voliun . (Contributed by Thierry Arnoux, 16-Oct-2017)

Ref Expression
Assertion voliune ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → ( vol ‘ 𝑛 ∈ ℕ 𝐴 ) = Σ* 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 r19.26 ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ↔ ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ) )
2 eqid seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ 𝐴 ) ) ) = seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ 𝐴 ) ) )
3 eqid ( 𝑛 ∈ ℕ ↦ ( vol ‘ 𝐴 ) ) = ( 𝑛 ∈ ℕ ↦ ( vol ‘ 𝐴 ) )
4 2 3 voliun ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → ( vol ‘ 𝑛 ∈ ℕ 𝐴 ) = sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ 𝐴 ) ) ) , ℝ* , < ) )
5 1 4 sylanbr ( ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → ( vol ‘ 𝑛 ∈ ℕ 𝐴 ) = sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ 𝐴 ) ) ) , ℝ* , < ) )
6 5 an32s ( ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴 ) ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ) → ( vol ‘ 𝑛 ∈ ℕ 𝐴 ) = sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ 𝐴 ) ) ) , ℝ* , < ) )
7 nfra1 𝑛𝑛 ∈ ℕ 𝐴 ∈ dom vol
8 nfra1 𝑛𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ
9 7 8 nfan 𝑛 ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ )
10 simpr ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ )
11 rspa ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑛 ∈ ℕ ) → 𝐴 ∈ dom vol )
12 volf vol : dom vol ⟶ ( 0 [,] +∞ )
13 12 ffvelrni ( 𝐴 ∈ dom vol → ( vol ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) )
14 11 13 syl ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑛 ∈ ℕ ) → ( vol ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) )
15 3 fvmpt2 ( ( 𝑛 ∈ ℕ ∧ ( vol ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) → ( ( 𝑛 ∈ ℕ ↦ ( vol ‘ 𝐴 ) ) ‘ 𝑛 ) = ( vol ‘ 𝐴 ) )
16 10 14 15 syl2anc ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑛 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( vol ‘ 𝐴 ) ) ‘ 𝑛 ) = ( vol ‘ 𝐴 ) )
17 16 adantlr ( ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( vol ‘ 𝐴 ) ) ‘ 𝑛 ) = ( vol ‘ 𝐴 ) )
18 17 ex ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ) → ( 𝑛 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( vol ‘ 𝐴 ) ) ‘ 𝑛 ) = ( vol ‘ 𝐴 ) ) )
19 9 18 ralrimi ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ) → ∀ 𝑛 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( vol ‘ 𝐴 ) ) ‘ 𝑛 ) = ( vol ‘ 𝐴 ) )
20 9 19 esumeq2d ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ) → Σ* 𝑛 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( vol ‘ 𝐴 ) ) ‘ 𝑛 ) = Σ* 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) )
21 simpr ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ) → ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ )
22 21 r19.21bi ( ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → ( vol ‘ 𝐴 ) ∈ ℝ )
23 14 adantlr ( ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → ( vol ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) )
24 0xr 0 ∈ ℝ*
25 pnfxr +∞ ∈ ℝ*
26 elicc1 ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( vol ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ↔ ( ( vol ‘ 𝐴 ) ∈ ℝ* ∧ 0 ≤ ( vol ‘ 𝐴 ) ∧ ( vol ‘ 𝐴 ) ≤ +∞ ) ) )
27 24 25 26 mp2an ( ( vol ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ↔ ( ( vol ‘ 𝐴 ) ∈ ℝ* ∧ 0 ≤ ( vol ‘ 𝐴 ) ∧ ( vol ‘ 𝐴 ) ≤ +∞ ) )
28 27 simp2bi ( ( vol ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) → 0 ≤ ( vol ‘ 𝐴 ) )
29 23 28 syl ( ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → 0 ≤ ( vol ‘ 𝐴 ) )
30 ltpnf ( ( vol ‘ 𝐴 ) ∈ ℝ → ( vol ‘ 𝐴 ) < +∞ )
31 22 30 syl ( ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → ( vol ‘ 𝐴 ) < +∞ )
32 0re 0 ∈ ℝ
33 elico2 ( ( 0 ∈ ℝ ∧ +∞ ∈ ℝ* ) → ( ( vol ‘ 𝐴 ) ∈ ( 0 [,) +∞ ) ↔ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( vol ‘ 𝐴 ) ∧ ( vol ‘ 𝐴 ) < +∞ ) ) )
34 32 25 33 mp2an ( ( vol ‘ 𝐴 ) ∈ ( 0 [,) +∞ ) ↔ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( vol ‘ 𝐴 ) ∧ ( vol ‘ 𝐴 ) < +∞ ) )
35 22 29 31 34 syl3anbrc ( ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → ( vol ‘ 𝐴 ) ∈ ( 0 [,) +∞ ) )
36 9 35 3 fmptdf ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ) → ( 𝑛 ∈ ℕ ↦ ( vol ‘ 𝐴 ) ) : ℕ ⟶ ( 0 [,) +∞ ) )
37 nfmpt1 𝑛 ( 𝑛 ∈ ℕ ↦ ( vol ‘ 𝐴 ) )
38 37 esumfsupre ( ( 𝑛 ∈ ℕ ↦ ( vol ‘ 𝐴 ) ) : ℕ ⟶ ( 0 [,) +∞ ) → Σ* 𝑛 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( vol ‘ 𝐴 ) ) ‘ 𝑛 ) = sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ 𝐴 ) ) ) , ℝ* , < ) )
39 36 38 syl ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ) → Σ* 𝑛 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( vol ‘ 𝐴 ) ) ‘ 𝑛 ) = sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ 𝐴 ) ) ) , ℝ* , < ) )
40 20 39 eqtr3d ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ) → Σ* 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) = sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ 𝐴 ) ) ) , ℝ* , < ) )
41 40 adantlr ( ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴 ) ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ) → Σ* 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) = sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ 𝐴 ) ) ) , ℝ* , < ) )
42 6 41 eqtr4d ( ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴 ) ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ) → ( vol ‘ 𝑛 ∈ ℕ 𝐴 ) = Σ* 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) )
43 simpr ( ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴 ) ∧ ∃ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) = +∞ ) → ∃ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) = +∞ )
44 nfv 𝑘 ( vol ‘ 𝐴 ) = +∞
45 nfcv 𝑛 vol
46 nfcsb1v 𝑛 𝑘 / 𝑛 𝐴
47 45 46 nffv 𝑛 ( vol ‘ 𝑘 / 𝑛 𝐴 )
48 47 nfeq1 𝑛 ( vol ‘ 𝑘 / 𝑛 𝐴 ) = +∞
49 csbeq1a ( 𝑛 = 𝑘𝐴 = 𝑘 / 𝑛 𝐴 )
50 49 fveqeq2d ( 𝑛 = 𝑘 → ( ( vol ‘ 𝐴 ) = +∞ ↔ ( vol ‘ 𝑘 / 𝑛 𝐴 ) = +∞ ) )
51 44 48 50 cbvrexw ( ∃ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) = +∞ ↔ ∃ 𝑘 ∈ ℕ ( vol ‘ 𝑘 / 𝑛 𝐴 ) = +∞ )
52 43 51 sylib ( ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴 ) ∧ ∃ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) = +∞ ) → ∃ 𝑘 ∈ ℕ ( vol ‘ 𝑘 / 𝑛 𝐴 ) = +∞ )
53 46 nfel1 𝑛 𝑘 / 𝑛 𝐴 ∈ dom vol
54 49 eleq1d ( 𝑛 = 𝑘 → ( 𝐴 ∈ dom vol ↔ 𝑘 / 𝑛 𝐴 ∈ dom vol ) )
55 53 54 rspc ( 𝑘 ∈ ℕ → ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol → 𝑘 / 𝑛 𝐴 ∈ dom vol ) )
56 55 impcom ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑘 ∈ ℕ ) → 𝑘 / 𝑛 𝐴 ∈ dom vol )
57 iunmbl ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol → 𝑛 ∈ ℕ 𝐴 ∈ dom vol )
58 57 adantr ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑘 ∈ ℕ ) → 𝑛 ∈ ℕ 𝐴 ∈ dom vol )
59 nfcv 𝑛
60 nfcv 𝑛 𝑘
61 59 60 46 49 ssiun2sf ( 𝑘 ∈ ℕ → 𝑘 / 𝑛 𝐴 𝑛 ∈ ℕ 𝐴 )
62 61 adantl ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑘 ∈ ℕ ) → 𝑘 / 𝑛 𝐴 𝑛 ∈ ℕ 𝐴 )
63 volss ( ( 𝑘 / 𝑛 𝐴 ∈ dom vol ∧ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑘 / 𝑛 𝐴 𝑛 ∈ ℕ 𝐴 ) → ( vol ‘ 𝑘 / 𝑛 𝐴 ) ≤ ( vol ‘ 𝑛 ∈ ℕ 𝐴 ) )
64 56 58 62 63 syl3anc ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑘 ∈ ℕ ) → ( vol ‘ 𝑘 / 𝑛 𝐴 ) ≤ ( vol ‘ 𝑛 ∈ ℕ 𝐴 ) )
65 64 adantlr ( ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( vol ‘ 𝑘 / 𝑛 𝐴 ) ≤ ( vol ‘ 𝑛 ∈ ℕ 𝐴 ) )
66 65 adantlr ( ( ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴 ) ∧ ∃ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) = +∞ ) ∧ 𝑘 ∈ ℕ ) → ( vol ‘ 𝑘 / 𝑛 𝐴 ) ≤ ( vol ‘ 𝑛 ∈ ℕ 𝐴 ) )
67 66 ralrimiva ( ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴 ) ∧ ∃ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) = +∞ ) → ∀ 𝑘 ∈ ℕ ( vol ‘ 𝑘 / 𝑛 𝐴 ) ≤ ( vol ‘ 𝑛 ∈ ℕ 𝐴 ) )
68 r19.29r ( ( ∃ 𝑘 ∈ ℕ ( vol ‘ 𝑘 / 𝑛 𝐴 ) = +∞ ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ 𝑘 / 𝑛 𝐴 ) ≤ ( vol ‘ 𝑛 ∈ ℕ 𝐴 ) ) → ∃ 𝑘 ∈ ℕ ( ( vol ‘ 𝑘 / 𝑛 𝐴 ) = +∞ ∧ ( vol ‘ 𝑘 / 𝑛 𝐴 ) ≤ ( vol ‘ 𝑛 ∈ ℕ 𝐴 ) ) )
69 52 67 68 syl2anc ( ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴 ) ∧ ∃ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) = +∞ ) → ∃ 𝑘 ∈ ℕ ( ( vol ‘ 𝑘 / 𝑛 𝐴 ) = +∞ ∧ ( vol ‘ 𝑘 / 𝑛 𝐴 ) ≤ ( vol ‘ 𝑛 ∈ ℕ 𝐴 ) ) )
70 breq1 ( ( vol ‘ 𝑘 / 𝑛 𝐴 ) = +∞ → ( ( vol ‘ 𝑘 / 𝑛 𝐴 ) ≤ ( vol ‘ 𝑛 ∈ ℕ 𝐴 ) ↔ +∞ ≤ ( vol ‘ 𝑛 ∈ ℕ 𝐴 ) ) )
71 70 biimpa ( ( ( vol ‘ 𝑘 / 𝑛 𝐴 ) = +∞ ∧ ( vol ‘ 𝑘 / 𝑛 𝐴 ) ≤ ( vol ‘ 𝑛 ∈ ℕ 𝐴 ) ) → +∞ ≤ ( vol ‘ 𝑛 ∈ ℕ 𝐴 ) )
72 71 reximi ( ∃ 𝑘 ∈ ℕ ( ( vol ‘ 𝑘 / 𝑛 𝐴 ) = +∞ ∧ ( vol ‘ 𝑘 / 𝑛 𝐴 ) ≤ ( vol ‘ 𝑛 ∈ ℕ 𝐴 ) ) → ∃ 𝑘 ∈ ℕ +∞ ≤ ( vol ‘ 𝑛 ∈ ℕ 𝐴 ) )
73 69 72 syl ( ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴 ) ∧ ∃ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) = +∞ ) → ∃ 𝑘 ∈ ℕ +∞ ≤ ( vol ‘ 𝑛 ∈ ℕ 𝐴 ) )
74 1nn 1 ∈ ℕ
75 ne0i ( 1 ∈ ℕ → ℕ ≠ ∅ )
76 r19.9rzv ( ℕ ≠ ∅ → ( +∞ ≤ ( vol ‘ 𝑛 ∈ ℕ 𝐴 ) ↔ ∃ 𝑘 ∈ ℕ +∞ ≤ ( vol ‘ 𝑛 ∈ ℕ 𝐴 ) ) )
77 74 75 76 mp2b ( +∞ ≤ ( vol ‘ 𝑛 ∈ ℕ 𝐴 ) ↔ ∃ 𝑘 ∈ ℕ +∞ ≤ ( vol ‘ 𝑛 ∈ ℕ 𝐴 ) )
78 73 77 sylibr ( ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴 ) ∧ ∃ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) = +∞ ) → +∞ ≤ ( vol ‘ 𝑛 ∈ ℕ 𝐴 ) )
79 iccssxr ( 0 [,] +∞ ) ⊆ ℝ*
80 12 ffvelrni ( 𝑛 ∈ ℕ 𝐴 ∈ dom vol → ( vol ‘ 𝑛 ∈ ℕ 𝐴 ) ∈ ( 0 [,] +∞ ) )
81 79 80 sselid ( 𝑛 ∈ ℕ 𝐴 ∈ dom vol → ( vol ‘ 𝑛 ∈ ℕ 𝐴 ) ∈ ℝ* )
82 57 81 syl ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol → ( vol ‘ 𝑛 ∈ ℕ 𝐴 ) ∈ ℝ* )
83 82 ad2antrr ( ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴 ) ∧ ∃ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) = +∞ ) → ( vol ‘ 𝑛 ∈ ℕ 𝐴 ) ∈ ℝ* )
84 xgepnf ( ( vol ‘ 𝑛 ∈ ℕ 𝐴 ) ∈ ℝ* → ( +∞ ≤ ( vol ‘ 𝑛 ∈ ℕ 𝐴 ) ↔ ( vol ‘ 𝑛 ∈ ℕ 𝐴 ) = +∞ ) )
85 83 84 syl ( ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴 ) ∧ ∃ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) = +∞ ) → ( +∞ ≤ ( vol ‘ 𝑛 ∈ ℕ 𝐴 ) ↔ ( vol ‘ 𝑛 ∈ ℕ 𝐴 ) = +∞ ) )
86 78 85 mpbid ( ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴 ) ∧ ∃ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) = +∞ ) → ( vol ‘ 𝑛 ∈ ℕ 𝐴 ) = +∞ )
87 nfdisj1 𝑛 Disj 𝑛 ∈ ℕ 𝐴
88 7 87 nfan 𝑛 ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴 )
89 nfre1 𝑛𝑛 ∈ ℕ ( vol ‘ 𝐴 ) = +∞
90 88 89 nfan 𝑛 ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴 ) ∧ ∃ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) = +∞ )
91 nnex ℕ ∈ V
92 91 a1i ( ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴 ) ∧ ∃ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) = +∞ ) → ℕ ∈ V )
93 14 3ad2antr3 ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ( Disj 𝑛 ∈ ℕ 𝐴 ∧ ∃ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) = +∞ ∧ 𝑛 ∈ ℕ ) ) → ( vol ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) )
94 93 3anassrs ( ( ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴 ) ∧ ∃ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) = +∞ ) ∧ 𝑛 ∈ ℕ ) → ( vol ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) )
95 90 92 94 43 esumpinfval ( ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴 ) ∧ ∃ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) = +∞ ) → Σ* 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) = +∞ )
96 86 95 eqtr4d ( ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴 ) ∧ ∃ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) = +∞ ) → ( vol ‘ 𝑛 ∈ ℕ 𝐴 ) = Σ* 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) )
97 exmid ( ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ∨ ¬ ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ )
98 rexnal ( ∃ 𝑛 ∈ ℕ ¬ ( vol ‘ 𝐴 ) ∈ ℝ ↔ ¬ ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ )
99 98 orbi2i ( ( ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ∨ ∃ 𝑛 ∈ ℕ ¬ ( vol ‘ 𝐴 ) ∈ ℝ ) ↔ ( ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ∨ ¬ ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ) )
100 97 99 mpbir ( ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ∨ ∃ 𝑛 ∈ ℕ ¬ ( vol ‘ 𝐴 ) ∈ ℝ )
101 r19.29 ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∃ 𝑛 ∈ ℕ ¬ ( vol ‘ 𝐴 ) ∈ ℝ ) → ∃ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ¬ ( vol ‘ 𝐴 ) ∈ ℝ ) )
102 xrge0nre ( ( ( vol ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ∧ ¬ ( vol ‘ 𝐴 ) ∈ ℝ ) → ( vol ‘ 𝐴 ) = +∞ )
103 13 102 sylan ( ( 𝐴 ∈ dom vol ∧ ¬ ( vol ‘ 𝐴 ) ∈ ℝ ) → ( vol ‘ 𝐴 ) = +∞ )
104 103 reximi ( ∃ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ¬ ( vol ‘ 𝐴 ) ∈ ℝ ) → ∃ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) = +∞ )
105 101 104 syl ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∃ 𝑛 ∈ ℕ ¬ ( vol ‘ 𝐴 ) ∈ ℝ ) → ∃ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) = +∞ )
106 105 ex ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol → ( ∃ 𝑛 ∈ ℕ ¬ ( vol ‘ 𝐴 ) ∈ ℝ → ∃ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) = +∞ ) )
107 106 orim2d ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol → ( ( ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ∨ ∃ 𝑛 ∈ ℕ ¬ ( vol ‘ 𝐴 ) ∈ ℝ ) → ( ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ∨ ∃ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) = +∞ ) ) )
108 100 107 mpi ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol → ( ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ∨ ∃ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) = +∞ ) )
109 108 adantr ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → ( ∀ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) ∈ ℝ ∨ ∃ 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) = +∞ ) )
110 42 96 109 mpjaodan ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → ( vol ‘ 𝑛 ∈ ℕ 𝐴 ) = Σ* 𝑛 ∈ ℕ ( vol ‘ 𝐴 ) )