| Step | Hyp | Ref | Expression | 
						
							| 1 |  | r19.26 | ⊢ ( ∀ 𝑛  ∈  ℕ ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  ↔  ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  ∈  ℝ ) ) | 
						
							| 2 |  | eqid | ⊢ seq 1 (  +  ,  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ 𝐴 ) ) )  =  seq 1 (  +  ,  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ 𝐴 ) ) ) | 
						
							| 3 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( vol ‘ 𝐴 ) )  =  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ 𝐴 ) ) | 
						
							| 4 | 2 3 | voliun | ⊢ ( ( ∀ 𝑛  ∈  ℕ ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  ∧  Disj  𝑛  ∈  ℕ 𝐴 )  →  ( vol ‘ ∪  𝑛  ∈  ℕ 𝐴 )  =  sup ( ran  seq 1 (  +  ,  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ 𝐴 ) ) ) ,  ℝ* ,   <  ) ) | 
						
							| 5 | 1 4 | sylanbr | ⊢ ( ( ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  ∈  ℝ )  ∧  Disj  𝑛  ∈  ℕ 𝐴 )  →  ( vol ‘ ∪  𝑛  ∈  ℕ 𝐴 )  =  sup ( ran  seq 1 (  +  ,  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ 𝐴 ) ) ) ,  ℝ* ,   <  ) ) | 
						
							| 6 | 5 | an32s | ⊢ ( ( ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  Disj  𝑛  ∈  ℕ 𝐴 )  ∧  ∀ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  ∈  ℝ )  →  ( vol ‘ ∪  𝑛  ∈  ℕ 𝐴 )  =  sup ( ran  seq 1 (  +  ,  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ 𝐴 ) ) ) ,  ℝ* ,   <  ) ) | 
						
							| 7 |  | nfra1 | ⊢ Ⅎ 𝑛 ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol | 
						
							| 8 |  | nfra1 | ⊢ Ⅎ 𝑛 ∀ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  ∈  ℝ | 
						
							| 9 | 7 8 | nfan | ⊢ Ⅎ 𝑛 ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 10 |  | simpr | ⊢ ( ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  ℕ ) | 
						
							| 11 |  | rspa | ⊢ ( ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  𝑛  ∈  ℕ )  →  𝐴  ∈  dom  vol ) | 
						
							| 12 |  | volf | ⊢ vol : dom  vol ⟶ ( 0 [,] +∞ ) | 
						
							| 13 | 12 | ffvelcdmi | ⊢ ( 𝐴  ∈  dom  vol  →  ( vol ‘ 𝐴 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 14 | 11 13 | syl | ⊢ ( ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  𝑛  ∈  ℕ )  →  ( vol ‘ 𝐴 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 15 | 3 | fvmpt2 | ⊢ ( ( 𝑛  ∈  ℕ  ∧  ( vol ‘ 𝐴 )  ∈  ( 0 [,] +∞ ) )  →  ( ( 𝑛  ∈  ℕ  ↦  ( vol ‘ 𝐴 ) ) ‘ 𝑛 )  =  ( vol ‘ 𝐴 ) ) | 
						
							| 16 | 10 14 15 | syl2anc | ⊢ ( ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( vol ‘ 𝐴 ) ) ‘ 𝑛 )  =  ( vol ‘ 𝐴 ) ) | 
						
							| 17 | 16 | adantlr | ⊢ ( ( ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  ∈  ℝ )  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( vol ‘ 𝐴 ) ) ‘ 𝑛 )  =  ( vol ‘ 𝐴 ) ) | 
						
							| 18 | 17 | ex | ⊢ ( ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  ∈  ℝ )  →  ( 𝑛  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( vol ‘ 𝐴 ) ) ‘ 𝑛 )  =  ( vol ‘ 𝐴 ) ) ) | 
						
							| 19 | 9 18 | ralrimi | ⊢ ( ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  ∈  ℝ )  →  ∀ 𝑛  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ( vol ‘ 𝐴 ) ) ‘ 𝑛 )  =  ( vol ‘ 𝐴 ) ) | 
						
							| 20 | 9 19 | esumeq2d | ⊢ ( ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  ∈  ℝ )  →  Σ* 𝑛  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ( vol ‘ 𝐴 ) ) ‘ 𝑛 )  =  Σ* 𝑛  ∈  ℕ ( vol ‘ 𝐴 ) ) | 
						
							| 21 |  | simpr | ⊢ ( ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  ∈  ℝ )  →  ∀ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 22 | 21 | r19.21bi | ⊢ ( ( ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  ∈  ℝ )  ∧  𝑛  ∈  ℕ )  →  ( vol ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 23 | 14 | adantlr | ⊢ ( ( ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  ∈  ℝ )  ∧  𝑛  ∈  ℕ )  →  ( vol ‘ 𝐴 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 24 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 25 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 26 |  | elicc1 | ⊢ ( ( 0  ∈  ℝ*  ∧  +∞  ∈  ℝ* )  →  ( ( vol ‘ 𝐴 )  ∈  ( 0 [,] +∞ )  ↔  ( ( vol ‘ 𝐴 )  ∈  ℝ*  ∧  0  ≤  ( vol ‘ 𝐴 )  ∧  ( vol ‘ 𝐴 )  ≤  +∞ ) ) ) | 
						
							| 27 | 24 25 26 | mp2an | ⊢ ( ( vol ‘ 𝐴 )  ∈  ( 0 [,] +∞ )  ↔  ( ( vol ‘ 𝐴 )  ∈  ℝ*  ∧  0  ≤  ( vol ‘ 𝐴 )  ∧  ( vol ‘ 𝐴 )  ≤  +∞ ) ) | 
						
							| 28 | 27 | simp2bi | ⊢ ( ( vol ‘ 𝐴 )  ∈  ( 0 [,] +∞ )  →  0  ≤  ( vol ‘ 𝐴 ) ) | 
						
							| 29 | 23 28 | syl | ⊢ ( ( ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  ∈  ℝ )  ∧  𝑛  ∈  ℕ )  →  0  ≤  ( vol ‘ 𝐴 ) ) | 
						
							| 30 |  | ltpnf | ⊢ ( ( vol ‘ 𝐴 )  ∈  ℝ  →  ( vol ‘ 𝐴 )  <  +∞ ) | 
						
							| 31 | 22 30 | syl | ⊢ ( ( ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  ∈  ℝ )  ∧  𝑛  ∈  ℕ )  →  ( vol ‘ 𝐴 )  <  +∞ ) | 
						
							| 32 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 33 |  | elico2 | ⊢ ( ( 0  ∈  ℝ  ∧  +∞  ∈  ℝ* )  →  ( ( vol ‘ 𝐴 )  ∈  ( 0 [,) +∞ )  ↔  ( ( vol ‘ 𝐴 )  ∈  ℝ  ∧  0  ≤  ( vol ‘ 𝐴 )  ∧  ( vol ‘ 𝐴 )  <  +∞ ) ) ) | 
						
							| 34 | 32 25 33 | mp2an | ⊢ ( ( vol ‘ 𝐴 )  ∈  ( 0 [,) +∞ )  ↔  ( ( vol ‘ 𝐴 )  ∈  ℝ  ∧  0  ≤  ( vol ‘ 𝐴 )  ∧  ( vol ‘ 𝐴 )  <  +∞ ) ) | 
						
							| 35 | 22 29 31 34 | syl3anbrc | ⊢ ( ( ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  ∈  ℝ )  ∧  𝑛  ∈  ℕ )  →  ( vol ‘ 𝐴 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 36 | 9 35 3 | fmptdf | ⊢ ( ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  ∈  ℝ )  →  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ 𝐴 ) ) : ℕ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 37 |  | nfmpt1 | ⊢ Ⅎ 𝑛 ( 𝑛  ∈  ℕ  ↦  ( vol ‘ 𝐴 ) ) | 
						
							| 38 | 37 | esumfsupre | ⊢ ( ( 𝑛  ∈  ℕ  ↦  ( vol ‘ 𝐴 ) ) : ℕ ⟶ ( 0 [,) +∞ )  →  Σ* 𝑛  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ( vol ‘ 𝐴 ) ) ‘ 𝑛 )  =  sup ( ran  seq 1 (  +  ,  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ 𝐴 ) ) ) ,  ℝ* ,   <  ) ) | 
						
							| 39 | 36 38 | syl | ⊢ ( ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  ∈  ℝ )  →  Σ* 𝑛  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ( vol ‘ 𝐴 ) ) ‘ 𝑛 )  =  sup ( ran  seq 1 (  +  ,  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ 𝐴 ) ) ) ,  ℝ* ,   <  ) ) | 
						
							| 40 | 20 39 | eqtr3d | ⊢ ( ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  ∈  ℝ )  →  Σ* 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  =  sup ( ran  seq 1 (  +  ,  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ 𝐴 ) ) ) ,  ℝ* ,   <  ) ) | 
						
							| 41 | 40 | adantlr | ⊢ ( ( ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  Disj  𝑛  ∈  ℕ 𝐴 )  ∧  ∀ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  ∈  ℝ )  →  Σ* 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  =  sup ( ran  seq 1 (  +  ,  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ 𝐴 ) ) ) ,  ℝ* ,   <  ) ) | 
						
							| 42 | 6 41 | eqtr4d | ⊢ ( ( ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  Disj  𝑛  ∈  ℕ 𝐴 )  ∧  ∀ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  ∈  ℝ )  →  ( vol ‘ ∪  𝑛  ∈  ℕ 𝐴 )  =  Σ* 𝑛  ∈  ℕ ( vol ‘ 𝐴 ) ) | 
						
							| 43 |  | simpr | ⊢ ( ( ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  Disj  𝑛  ∈  ℕ 𝐴 )  ∧  ∃ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  =  +∞ )  →  ∃ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  =  +∞ ) | 
						
							| 44 |  | nfv | ⊢ Ⅎ 𝑘 ( vol ‘ 𝐴 )  =  +∞ | 
						
							| 45 |  | nfcv | ⊢ Ⅎ 𝑛 vol | 
						
							| 46 |  | nfcsb1v | ⊢ Ⅎ 𝑛 ⦋ 𝑘  /  𝑛 ⦌ 𝐴 | 
						
							| 47 | 45 46 | nffv | ⊢ Ⅎ 𝑛 ( vol ‘ ⦋ 𝑘  /  𝑛 ⦌ 𝐴 ) | 
						
							| 48 | 47 | nfeq1 | ⊢ Ⅎ 𝑛 ( vol ‘ ⦋ 𝑘  /  𝑛 ⦌ 𝐴 )  =  +∞ | 
						
							| 49 |  | csbeq1a | ⊢ ( 𝑛  =  𝑘  →  𝐴  =  ⦋ 𝑘  /  𝑛 ⦌ 𝐴 ) | 
						
							| 50 | 49 | fveqeq2d | ⊢ ( 𝑛  =  𝑘  →  ( ( vol ‘ 𝐴 )  =  +∞  ↔  ( vol ‘ ⦋ 𝑘  /  𝑛 ⦌ 𝐴 )  =  +∞ ) ) | 
						
							| 51 | 44 48 50 | cbvrexw | ⊢ ( ∃ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  =  +∞  ↔  ∃ 𝑘  ∈  ℕ ( vol ‘ ⦋ 𝑘  /  𝑛 ⦌ 𝐴 )  =  +∞ ) | 
						
							| 52 | 43 51 | sylib | ⊢ ( ( ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  Disj  𝑛  ∈  ℕ 𝐴 )  ∧  ∃ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  =  +∞ )  →  ∃ 𝑘  ∈  ℕ ( vol ‘ ⦋ 𝑘  /  𝑛 ⦌ 𝐴 )  =  +∞ ) | 
						
							| 53 | 46 | nfel1 | ⊢ Ⅎ 𝑛 ⦋ 𝑘  /  𝑛 ⦌ 𝐴  ∈  dom  vol | 
						
							| 54 | 49 | eleq1d | ⊢ ( 𝑛  =  𝑘  →  ( 𝐴  ∈  dom  vol  ↔  ⦋ 𝑘  /  𝑛 ⦌ 𝐴  ∈  dom  vol ) ) | 
						
							| 55 | 53 54 | rspc | ⊢ ( 𝑘  ∈  ℕ  →  ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  →  ⦋ 𝑘  /  𝑛 ⦌ 𝐴  ∈  dom  vol ) ) | 
						
							| 56 | 55 | impcom | ⊢ ( ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  𝑘  ∈  ℕ )  →  ⦋ 𝑘  /  𝑛 ⦌ 𝐴  ∈  dom  vol ) | 
						
							| 57 |  | iunmbl | ⊢ ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  →  ∪  𝑛  ∈  ℕ 𝐴  ∈  dom  vol ) | 
						
							| 58 | 57 | adantr | ⊢ ( ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  𝑘  ∈  ℕ )  →  ∪  𝑛  ∈  ℕ 𝐴  ∈  dom  vol ) | 
						
							| 59 |  | nfcv | ⊢ Ⅎ 𝑛 ℕ | 
						
							| 60 |  | nfcv | ⊢ Ⅎ 𝑛 𝑘 | 
						
							| 61 | 59 60 46 49 | ssiun2sf | ⊢ ( 𝑘  ∈  ℕ  →  ⦋ 𝑘  /  𝑛 ⦌ 𝐴  ⊆  ∪  𝑛  ∈  ℕ 𝐴 ) | 
						
							| 62 | 61 | adantl | ⊢ ( ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  𝑘  ∈  ℕ )  →  ⦋ 𝑘  /  𝑛 ⦌ 𝐴  ⊆  ∪  𝑛  ∈  ℕ 𝐴 ) | 
						
							| 63 |  | volss | ⊢ ( ( ⦋ 𝑘  /  𝑛 ⦌ 𝐴  ∈  dom  vol  ∧  ∪  𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  ⦋ 𝑘  /  𝑛 ⦌ 𝐴  ⊆  ∪  𝑛  ∈  ℕ 𝐴 )  →  ( vol ‘ ⦋ 𝑘  /  𝑛 ⦌ 𝐴 )  ≤  ( vol ‘ ∪  𝑛  ∈  ℕ 𝐴 ) ) | 
						
							| 64 | 56 58 62 63 | syl3anc | ⊢ ( ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  𝑘  ∈  ℕ )  →  ( vol ‘ ⦋ 𝑘  /  𝑛 ⦌ 𝐴 )  ≤  ( vol ‘ ∪  𝑛  ∈  ℕ 𝐴 ) ) | 
						
							| 65 | 64 | adantlr | ⊢ ( ( ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  Disj  𝑛  ∈  ℕ 𝐴 )  ∧  𝑘  ∈  ℕ )  →  ( vol ‘ ⦋ 𝑘  /  𝑛 ⦌ 𝐴 )  ≤  ( vol ‘ ∪  𝑛  ∈  ℕ 𝐴 ) ) | 
						
							| 66 | 65 | adantlr | ⊢ ( ( ( ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  Disj  𝑛  ∈  ℕ 𝐴 )  ∧  ∃ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  =  +∞ )  ∧  𝑘  ∈  ℕ )  →  ( vol ‘ ⦋ 𝑘  /  𝑛 ⦌ 𝐴 )  ≤  ( vol ‘ ∪  𝑛  ∈  ℕ 𝐴 ) ) | 
						
							| 67 | 66 | ralrimiva | ⊢ ( ( ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  Disj  𝑛  ∈  ℕ 𝐴 )  ∧  ∃ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  =  +∞ )  →  ∀ 𝑘  ∈  ℕ ( vol ‘ ⦋ 𝑘  /  𝑛 ⦌ 𝐴 )  ≤  ( vol ‘ ∪  𝑛  ∈  ℕ 𝐴 ) ) | 
						
							| 68 |  | r19.29r | ⊢ ( ( ∃ 𝑘  ∈  ℕ ( vol ‘ ⦋ 𝑘  /  𝑛 ⦌ 𝐴 )  =  +∞  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ⦋ 𝑘  /  𝑛 ⦌ 𝐴 )  ≤  ( vol ‘ ∪  𝑛  ∈  ℕ 𝐴 ) )  →  ∃ 𝑘  ∈  ℕ ( ( vol ‘ ⦋ 𝑘  /  𝑛 ⦌ 𝐴 )  =  +∞  ∧  ( vol ‘ ⦋ 𝑘  /  𝑛 ⦌ 𝐴 )  ≤  ( vol ‘ ∪  𝑛  ∈  ℕ 𝐴 ) ) ) | 
						
							| 69 | 52 67 68 | syl2anc | ⊢ ( ( ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  Disj  𝑛  ∈  ℕ 𝐴 )  ∧  ∃ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  =  +∞ )  →  ∃ 𝑘  ∈  ℕ ( ( vol ‘ ⦋ 𝑘  /  𝑛 ⦌ 𝐴 )  =  +∞  ∧  ( vol ‘ ⦋ 𝑘  /  𝑛 ⦌ 𝐴 )  ≤  ( vol ‘ ∪  𝑛  ∈  ℕ 𝐴 ) ) ) | 
						
							| 70 |  | breq1 | ⊢ ( ( vol ‘ ⦋ 𝑘  /  𝑛 ⦌ 𝐴 )  =  +∞  →  ( ( vol ‘ ⦋ 𝑘  /  𝑛 ⦌ 𝐴 )  ≤  ( vol ‘ ∪  𝑛  ∈  ℕ 𝐴 )  ↔  +∞  ≤  ( vol ‘ ∪  𝑛  ∈  ℕ 𝐴 ) ) ) | 
						
							| 71 | 70 | biimpa | ⊢ ( ( ( vol ‘ ⦋ 𝑘  /  𝑛 ⦌ 𝐴 )  =  +∞  ∧  ( vol ‘ ⦋ 𝑘  /  𝑛 ⦌ 𝐴 )  ≤  ( vol ‘ ∪  𝑛  ∈  ℕ 𝐴 ) )  →  +∞  ≤  ( vol ‘ ∪  𝑛  ∈  ℕ 𝐴 ) ) | 
						
							| 72 | 71 | reximi | ⊢ ( ∃ 𝑘  ∈  ℕ ( ( vol ‘ ⦋ 𝑘  /  𝑛 ⦌ 𝐴 )  =  +∞  ∧  ( vol ‘ ⦋ 𝑘  /  𝑛 ⦌ 𝐴 )  ≤  ( vol ‘ ∪  𝑛  ∈  ℕ 𝐴 ) )  →  ∃ 𝑘  ∈  ℕ +∞  ≤  ( vol ‘ ∪  𝑛  ∈  ℕ 𝐴 ) ) | 
						
							| 73 | 69 72 | syl | ⊢ ( ( ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  Disj  𝑛  ∈  ℕ 𝐴 )  ∧  ∃ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  =  +∞ )  →  ∃ 𝑘  ∈  ℕ +∞  ≤  ( vol ‘ ∪  𝑛  ∈  ℕ 𝐴 ) ) | 
						
							| 74 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 75 |  | ne0i | ⊢ ( 1  ∈  ℕ  →  ℕ  ≠  ∅ ) | 
						
							| 76 |  | r19.9rzv | ⊢ ( ℕ  ≠  ∅  →  ( +∞  ≤  ( vol ‘ ∪  𝑛  ∈  ℕ 𝐴 )  ↔  ∃ 𝑘  ∈  ℕ +∞  ≤  ( vol ‘ ∪  𝑛  ∈  ℕ 𝐴 ) ) ) | 
						
							| 77 | 74 75 76 | mp2b | ⊢ ( +∞  ≤  ( vol ‘ ∪  𝑛  ∈  ℕ 𝐴 )  ↔  ∃ 𝑘  ∈  ℕ +∞  ≤  ( vol ‘ ∪  𝑛  ∈  ℕ 𝐴 ) ) | 
						
							| 78 | 73 77 | sylibr | ⊢ ( ( ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  Disj  𝑛  ∈  ℕ 𝐴 )  ∧  ∃ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  =  +∞ )  →  +∞  ≤  ( vol ‘ ∪  𝑛  ∈  ℕ 𝐴 ) ) | 
						
							| 79 |  | iccssxr | ⊢ ( 0 [,] +∞ )  ⊆  ℝ* | 
						
							| 80 | 12 | ffvelcdmi | ⊢ ( ∪  𝑛  ∈  ℕ 𝐴  ∈  dom  vol  →  ( vol ‘ ∪  𝑛  ∈  ℕ 𝐴 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 81 | 79 80 | sselid | ⊢ ( ∪  𝑛  ∈  ℕ 𝐴  ∈  dom  vol  →  ( vol ‘ ∪  𝑛  ∈  ℕ 𝐴 )  ∈  ℝ* ) | 
						
							| 82 | 57 81 | syl | ⊢ ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  →  ( vol ‘ ∪  𝑛  ∈  ℕ 𝐴 )  ∈  ℝ* ) | 
						
							| 83 | 82 | ad2antrr | ⊢ ( ( ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  Disj  𝑛  ∈  ℕ 𝐴 )  ∧  ∃ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  =  +∞ )  →  ( vol ‘ ∪  𝑛  ∈  ℕ 𝐴 )  ∈  ℝ* ) | 
						
							| 84 |  | xgepnf | ⊢ ( ( vol ‘ ∪  𝑛  ∈  ℕ 𝐴 )  ∈  ℝ*  →  ( +∞  ≤  ( vol ‘ ∪  𝑛  ∈  ℕ 𝐴 )  ↔  ( vol ‘ ∪  𝑛  ∈  ℕ 𝐴 )  =  +∞ ) ) | 
						
							| 85 | 83 84 | syl | ⊢ ( ( ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  Disj  𝑛  ∈  ℕ 𝐴 )  ∧  ∃ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  =  +∞ )  →  ( +∞  ≤  ( vol ‘ ∪  𝑛  ∈  ℕ 𝐴 )  ↔  ( vol ‘ ∪  𝑛  ∈  ℕ 𝐴 )  =  +∞ ) ) | 
						
							| 86 | 78 85 | mpbid | ⊢ ( ( ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  Disj  𝑛  ∈  ℕ 𝐴 )  ∧  ∃ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  =  +∞ )  →  ( vol ‘ ∪  𝑛  ∈  ℕ 𝐴 )  =  +∞ ) | 
						
							| 87 |  | nfdisj1 | ⊢ Ⅎ 𝑛 Disj  𝑛  ∈  ℕ 𝐴 | 
						
							| 88 | 7 87 | nfan | ⊢ Ⅎ 𝑛 ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  Disj  𝑛  ∈  ℕ 𝐴 ) | 
						
							| 89 |  | nfre1 | ⊢ Ⅎ 𝑛 ∃ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  =  +∞ | 
						
							| 90 | 88 89 | nfan | ⊢ Ⅎ 𝑛 ( ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  Disj  𝑛  ∈  ℕ 𝐴 )  ∧  ∃ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  =  +∞ ) | 
						
							| 91 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 92 | 91 | a1i | ⊢ ( ( ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  Disj  𝑛  ∈  ℕ 𝐴 )  ∧  ∃ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  =  +∞ )  →  ℕ  ∈  V ) | 
						
							| 93 | 14 | 3ad2antr3 | ⊢ ( ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  ( Disj  𝑛  ∈  ℕ 𝐴  ∧  ∃ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  =  +∞  ∧  𝑛  ∈  ℕ ) )  →  ( vol ‘ 𝐴 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 94 | 93 | 3anassrs | ⊢ ( ( ( ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  Disj  𝑛  ∈  ℕ 𝐴 )  ∧  ∃ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  =  +∞ )  ∧  𝑛  ∈  ℕ )  →  ( vol ‘ 𝐴 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 95 | 90 92 94 43 | esumpinfval | ⊢ ( ( ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  Disj  𝑛  ∈  ℕ 𝐴 )  ∧  ∃ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  =  +∞ )  →  Σ* 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  =  +∞ ) | 
						
							| 96 | 86 95 | eqtr4d | ⊢ ( ( ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  Disj  𝑛  ∈  ℕ 𝐴 )  ∧  ∃ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  =  +∞ )  →  ( vol ‘ ∪  𝑛  ∈  ℕ 𝐴 )  =  Σ* 𝑛  ∈  ℕ ( vol ‘ 𝐴 ) ) | 
						
							| 97 |  | exmid | ⊢ ( ∀ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  ∈  ℝ  ∨  ¬  ∀ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 98 |  | rexnal | ⊢ ( ∃ 𝑛  ∈  ℕ ¬  ( vol ‘ 𝐴 )  ∈  ℝ  ↔  ¬  ∀ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 99 | 98 | orbi2i | ⊢ ( ( ∀ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  ∈  ℝ  ∨  ∃ 𝑛  ∈  ℕ ¬  ( vol ‘ 𝐴 )  ∈  ℝ )  ↔  ( ∀ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  ∈  ℝ  ∨  ¬  ∀ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  ∈  ℝ ) ) | 
						
							| 100 | 97 99 | mpbir | ⊢ ( ∀ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  ∈  ℝ  ∨  ∃ 𝑛  ∈  ℕ ¬  ( vol ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 101 |  | r19.29 | ⊢ ( ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  ∃ 𝑛  ∈  ℕ ¬  ( vol ‘ 𝐴 )  ∈  ℝ )  →  ∃ 𝑛  ∈  ℕ ( 𝐴  ∈  dom  vol  ∧  ¬  ( vol ‘ 𝐴 )  ∈  ℝ ) ) | 
						
							| 102 |  | xrge0nre | ⊢ ( ( ( vol ‘ 𝐴 )  ∈  ( 0 [,] +∞ )  ∧  ¬  ( vol ‘ 𝐴 )  ∈  ℝ )  →  ( vol ‘ 𝐴 )  =  +∞ ) | 
						
							| 103 | 13 102 | sylan | ⊢ ( ( 𝐴  ∈  dom  vol  ∧  ¬  ( vol ‘ 𝐴 )  ∈  ℝ )  →  ( vol ‘ 𝐴 )  =  +∞ ) | 
						
							| 104 | 103 | reximi | ⊢ ( ∃ 𝑛  ∈  ℕ ( 𝐴  ∈  dom  vol  ∧  ¬  ( vol ‘ 𝐴 )  ∈  ℝ )  →  ∃ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  =  +∞ ) | 
						
							| 105 | 101 104 | syl | ⊢ ( ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  ∃ 𝑛  ∈  ℕ ¬  ( vol ‘ 𝐴 )  ∈  ℝ )  →  ∃ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  =  +∞ ) | 
						
							| 106 | 105 | ex | ⊢ ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  →  ( ∃ 𝑛  ∈  ℕ ¬  ( vol ‘ 𝐴 )  ∈  ℝ  →  ∃ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  =  +∞ ) ) | 
						
							| 107 | 106 | orim2d | ⊢ ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  →  ( ( ∀ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  ∈  ℝ  ∨  ∃ 𝑛  ∈  ℕ ¬  ( vol ‘ 𝐴 )  ∈  ℝ )  →  ( ∀ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  ∈  ℝ  ∨  ∃ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  =  +∞ ) ) ) | 
						
							| 108 | 100 107 | mpi | ⊢ ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  →  ( ∀ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  ∈  ℝ  ∨  ∃ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  =  +∞ ) ) | 
						
							| 109 | 108 | adantr | ⊢ ( ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  Disj  𝑛  ∈  ℕ 𝐴 )  →  ( ∀ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  ∈  ℝ  ∨  ∃ 𝑛  ∈  ℕ ( vol ‘ 𝐴 )  =  +∞ ) ) | 
						
							| 110 | 42 96 109 | mpjaodan | ⊢ ( ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  Disj  𝑛  ∈  ℕ 𝐴 )  →  ( vol ‘ ∪  𝑛  ∈  ℕ 𝐴 )  =  Σ* 𝑛  ∈  ℕ ( vol ‘ 𝐴 ) ) |