Metamath Proof Explorer


Theorem voliune

Description: The Lebesgue measure function is countably additive. This formulation on the extended reals, allows for +oo for the measure of any set in the sum. Cf. ovoliun and voliun . (Contributed by Thierry Arnoux, 16-Oct-2017)

Ref Expression
Assertion voliune n A dom vol Disj n A vol n A = * n vol A

Proof

Step Hyp Ref Expression
1 r19.26 n A dom vol vol A n A dom vol n vol A
2 eqid seq 1 + n vol A = seq 1 + n vol A
3 eqid n vol A = n vol A
4 2 3 voliun n A dom vol vol A Disj n A vol n A = sup ran seq 1 + n vol A * <
5 1 4 sylanbr n A dom vol n vol A Disj n A vol n A = sup ran seq 1 + n vol A * <
6 5 an32s n A dom vol Disj n A n vol A vol n A = sup ran seq 1 + n vol A * <
7 nfra1 n n A dom vol
8 nfra1 n n vol A
9 7 8 nfan n n A dom vol n vol A
10 simpr n A dom vol n n
11 rspa n A dom vol n A dom vol
12 volf vol : dom vol 0 +∞
13 12 ffvelrni A dom vol vol A 0 +∞
14 11 13 syl n A dom vol n vol A 0 +∞
15 3 fvmpt2 n vol A 0 +∞ n vol A n = vol A
16 10 14 15 syl2anc n A dom vol n n vol A n = vol A
17 16 adantlr n A dom vol n vol A n n vol A n = vol A
18 17 ex n A dom vol n vol A n n vol A n = vol A
19 9 18 ralrimi n A dom vol n vol A n n vol A n = vol A
20 9 19 esumeq2d n A dom vol n vol A * n n vol A n = * n vol A
21 simpr n A dom vol n vol A n vol A
22 21 r19.21bi n A dom vol n vol A n vol A
23 14 adantlr n A dom vol n vol A n vol A 0 +∞
24 0xr 0 *
25 pnfxr +∞ *
26 elicc1 0 * +∞ * vol A 0 +∞ vol A * 0 vol A vol A +∞
27 24 25 26 mp2an vol A 0 +∞ vol A * 0 vol A vol A +∞
28 27 simp2bi vol A 0 +∞ 0 vol A
29 23 28 syl n A dom vol n vol A n 0 vol A
30 ltpnf vol A vol A < +∞
31 22 30 syl n A dom vol n vol A n vol A < +∞
32 0re 0
33 elico2 0 +∞ * vol A 0 +∞ vol A 0 vol A vol A < +∞
34 32 25 33 mp2an vol A 0 +∞ vol A 0 vol A vol A < +∞
35 22 29 31 34 syl3anbrc n A dom vol n vol A n vol A 0 +∞
36 9 35 3 fmptdf n A dom vol n vol A n vol A : 0 +∞
37 nfmpt1 _ n n vol A
38 37 esumfsupre n vol A : 0 +∞ * n n vol A n = sup ran seq 1 + n vol A * <
39 36 38 syl n A dom vol n vol A * n n vol A n = sup ran seq 1 + n vol A * <
40 20 39 eqtr3d n A dom vol n vol A * n vol A = sup ran seq 1 + n vol A * <
41 40 adantlr n A dom vol Disj n A n vol A * n vol A = sup ran seq 1 + n vol A * <
42 6 41 eqtr4d n A dom vol Disj n A n vol A vol n A = * n vol A
43 simpr n A dom vol Disj n A n vol A = +∞ n vol A = +∞
44 nfv k vol A = +∞
45 nfcv _ n vol
46 nfcsb1v _ n k / n A
47 45 46 nffv _ n vol k / n A
48 47 nfeq1 n vol k / n A = +∞
49 csbeq1a n = k A = k / n A
50 49 fveqeq2d n = k vol A = +∞ vol k / n A = +∞
51 44 48 50 cbvrexw n vol A = +∞ k vol k / n A = +∞
52 43 51 sylib n A dom vol Disj n A n vol A = +∞ k vol k / n A = +∞
53 46 nfel1 n k / n A dom vol
54 49 eleq1d n = k A dom vol k / n A dom vol
55 53 54 rspc k n A dom vol k / n A dom vol
56 55 impcom n A dom vol k k / n A dom vol
57 iunmbl n A dom vol n A dom vol
58 57 adantr n A dom vol k n A dom vol
59 nfcv _ n
60 nfcv _ n k
61 59 60 46 49 ssiun2sf k k / n A n A
62 61 adantl n A dom vol k k / n A n A
63 volss k / n A dom vol n A dom vol k / n A n A vol k / n A vol n A
64 56 58 62 63 syl3anc n A dom vol k vol k / n A vol n A
65 64 adantlr n A dom vol Disj n A k vol k / n A vol n A
66 65 adantlr n A dom vol Disj n A n vol A = +∞ k vol k / n A vol n A
67 66 ralrimiva n A dom vol Disj n A n vol A = +∞ k vol k / n A vol n A
68 r19.29r k vol k / n A = +∞ k vol k / n A vol n A k vol k / n A = +∞ vol k / n A vol n A
69 52 67 68 syl2anc n A dom vol Disj n A n vol A = +∞ k vol k / n A = +∞ vol k / n A vol n A
70 breq1 vol k / n A = +∞ vol k / n A vol n A +∞ vol n A
71 70 biimpa vol k / n A = +∞ vol k / n A vol n A +∞ vol n A
72 71 reximi k vol k / n A = +∞ vol k / n A vol n A k +∞ vol n A
73 69 72 syl n A dom vol Disj n A n vol A = +∞ k +∞ vol n A
74 1nn 1
75 ne0i 1
76 r19.9rzv +∞ vol n A k +∞ vol n A
77 74 75 76 mp2b +∞ vol n A k +∞ vol n A
78 73 77 sylibr n A dom vol Disj n A n vol A = +∞ +∞ vol n A
79 iccssxr 0 +∞ *
80 12 ffvelrni n A dom vol vol n A 0 +∞
81 79 80 sseldi n A dom vol vol n A *
82 57 81 syl n A dom vol vol n A *
83 82 ad2antrr n A dom vol Disj n A n vol A = +∞ vol n A *
84 xgepnf vol n A * +∞ vol n A vol n A = +∞
85 83 84 syl n A dom vol Disj n A n vol A = +∞ +∞ vol n A vol n A = +∞
86 78 85 mpbid n A dom vol Disj n A n vol A = +∞ vol n A = +∞
87 nfdisj1 n Disj n A
88 7 87 nfan n n A dom vol Disj n A
89 nfre1 n n vol A = +∞
90 88 89 nfan n n A dom vol Disj n A n vol A = +∞
91 nnex V
92 91 a1i n A dom vol Disj n A n vol A = +∞ V
93 14 3ad2antr3 n A dom vol Disj n A n vol A = +∞ n vol A 0 +∞
94 93 3anassrs n A dom vol Disj n A n vol A = +∞ n vol A 0 +∞
95 90 92 94 43 esumpinfval n A dom vol Disj n A n vol A = +∞ * n vol A = +∞
96 86 95 eqtr4d n A dom vol Disj n A n vol A = +∞ vol n A = * n vol A
97 exmid n vol A ¬ n vol A
98 rexnal n ¬ vol A ¬ n vol A
99 98 orbi2i n vol A n ¬ vol A n vol A ¬ n vol A
100 97 99 mpbir n vol A n ¬ vol A
101 r19.29 n A dom vol n ¬ vol A n A dom vol ¬ vol A
102 xrge0nre vol A 0 +∞ ¬ vol A vol A = +∞
103 13 102 sylan A dom vol ¬ vol A vol A = +∞
104 103 reximi n A dom vol ¬ vol A n vol A = +∞
105 101 104 syl n A dom vol n ¬ vol A n vol A = +∞
106 105 ex n A dom vol n ¬ vol A n vol A = +∞
107 106 orim2d n A dom vol n vol A n ¬ vol A n vol A n vol A = +∞
108 100 107 mpi n A dom vol n vol A n vol A = +∞
109 108 adantr n A dom vol Disj n A n vol A n vol A = +∞
110 42 96 109 mpjaodan n A dom vol Disj n A vol n A = * n vol A