Metamath Proof Explorer


Theorem volmeas

Description: The Lebesgue measure is a measure. (Contributed by Thierry Arnoux, 16-Oct-2017)

Ref Expression
Assertion volmeas vol ∈ ( measures ‘ dom vol )

Proof

Step Hyp Ref Expression
1 volf vol : dom vol ⟶ ( 0 [,] +∞ )
2 fvssunirn ( sigAlgebra ‘ ℝ ) ⊆ ran sigAlgebra
3 dmvlsiga dom vol ∈ ( sigAlgebra ‘ ℝ )
4 2 3 sselii dom vol ∈ ran sigAlgebra
5 0elsiga ( dom vol ∈ ran sigAlgebra → ∅ ∈ dom vol )
6 4 5 ax-mp ∅ ∈ dom vol
7 mblvol ( ∅ ∈ dom vol → ( vol ‘ ∅ ) = ( vol* ‘ ∅ ) )
8 6 7 ax-mp ( vol ‘ ∅ ) = ( vol* ‘ ∅ )
9 ovol0 ( vol* ‘ ∅ ) = 0
10 8 9 eqtri ( vol ‘ ∅ ) = 0
11 simpr ( ( ( 𝑥 ∈ 𝒫 dom vol ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) ) ∧ 𝑥 ∈ Fin ) → 𝑥 ∈ Fin )
12 nfv 𝑦 𝑥 ∈ 𝒫 dom vol
13 nfv 𝑦 𝑥 ≼ ω
14 nfdisj1 𝑦 Disj 𝑦𝑥 𝑦
15 13 14 nfan 𝑦 ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 )
16 12 15 nfan 𝑦 ( 𝑥 ∈ 𝒫 dom vol ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) )
17 nfv 𝑦 𝑥 ∈ Fin
18 16 17 nfan 𝑦 ( ( 𝑥 ∈ 𝒫 dom vol ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) ) ∧ 𝑥 ∈ Fin )
19 elpwi ( 𝑥 ∈ 𝒫 dom vol → 𝑥 ⊆ dom vol )
20 19 ad3antrrr ( ( ( ( 𝑥 ∈ 𝒫 dom vol ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) ) ∧ 𝑥 ∈ Fin ) ∧ 𝑦𝑥 ) → 𝑥 ⊆ dom vol )
21 simpr ( ( ( ( 𝑥 ∈ 𝒫 dom vol ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) ) ∧ 𝑥 ∈ Fin ) ∧ 𝑦𝑥 ) → 𝑦𝑥 )
22 20 21 sseldd ( ( ( ( 𝑥 ∈ 𝒫 dom vol ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) ) ∧ 𝑥 ∈ Fin ) ∧ 𝑦𝑥 ) → 𝑦 ∈ dom vol )
23 22 ex ( ( ( 𝑥 ∈ 𝒫 dom vol ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) ) ∧ 𝑥 ∈ Fin ) → ( 𝑦𝑥𝑦 ∈ dom vol ) )
24 18 23 ralrimi ( ( ( 𝑥 ∈ 𝒫 dom vol ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) ) ∧ 𝑥 ∈ Fin ) → ∀ 𝑦𝑥 𝑦 ∈ dom vol )
25 simplrr ( ( ( 𝑥 ∈ 𝒫 dom vol ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) ) ∧ 𝑥 ∈ Fin ) → Disj 𝑦𝑥 𝑦 )
26 uniiun 𝑥 = 𝑦𝑥 𝑦
27 26 fveq2i ( vol ‘ 𝑥 ) = ( vol ‘ 𝑦𝑥 𝑦 )
28 volfiniune ( ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦 ∈ dom vol ∧ Disj 𝑦𝑥 𝑦 ) → ( vol ‘ 𝑦𝑥 𝑦 ) = Σ* 𝑦𝑥 ( vol ‘ 𝑦 ) )
29 27 28 eqtrid ( ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦 ∈ dom vol ∧ Disj 𝑦𝑥 𝑦 ) → ( vol ‘ 𝑥 ) = Σ* 𝑦𝑥 ( vol ‘ 𝑦 ) )
30 11 24 25 29 syl3anc ( ( ( 𝑥 ∈ 𝒫 dom vol ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) ) ∧ 𝑥 ∈ Fin ) → ( vol ‘ 𝑥 ) = Σ* 𝑦𝑥 ( vol ‘ 𝑦 ) )
31 bren ( ℕ ≈ 𝑥 ↔ ∃ 𝑓 𝑓 : ℕ –1-1-onto𝑥 )
32 nfv 𝑛 ( 𝑥 ∈ 𝒫 dom vol ∧ 𝑓 : ℕ –1-1-onto𝑥 )
33 nfcv 𝑛 ( vol ‘ 𝑦 )
34 nfcv 𝑦 ( vol ‘ ( 𝑓𝑛 ) )
35 nfcv 𝑛 𝑥
36 nfcv 𝑛
37 nfcv 𝑛 𝑓
38 fveq2 ( 𝑦 = ( 𝑓𝑛 ) → ( vol ‘ 𝑦 ) = ( vol ‘ ( 𝑓𝑛 ) ) )
39 simpl ( ( 𝑥 ∈ 𝒫 dom vol ∧ 𝑓 : ℕ –1-1-onto𝑥 ) → 𝑥 ∈ 𝒫 dom vol )
40 simpr ( ( 𝑥 ∈ 𝒫 dom vol ∧ 𝑓 : ℕ –1-1-onto𝑥 ) → 𝑓 : ℕ –1-1-onto𝑥 )
41 eqidd ( ( ( 𝑥 ∈ 𝒫 dom vol ∧ 𝑓 : ℕ –1-1-onto𝑥 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑓𝑛 ) = ( 𝑓𝑛 ) )
42 1 a1i ( ( ( 𝑥 ∈ 𝒫 dom vol ∧ 𝑓 : ℕ –1-1-onto𝑥 ) ∧ 𝑦𝑥 ) → vol : dom vol ⟶ ( 0 [,] +∞ ) )
43 39 19 syl ( ( 𝑥 ∈ 𝒫 dom vol ∧ 𝑓 : ℕ –1-1-onto𝑥 ) → 𝑥 ⊆ dom vol )
44 43 sselda ( ( ( 𝑥 ∈ 𝒫 dom vol ∧ 𝑓 : ℕ –1-1-onto𝑥 ) ∧ 𝑦𝑥 ) → 𝑦 ∈ dom vol )
45 42 44 ffvelrnd ( ( ( 𝑥 ∈ 𝒫 dom vol ∧ 𝑓 : ℕ –1-1-onto𝑥 ) ∧ 𝑦𝑥 ) → ( vol ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) )
46 32 33 34 35 36 37 38 39 40 41 45 esumf1o ( ( 𝑥 ∈ 𝒫 dom vol ∧ 𝑓 : ℕ –1-1-onto𝑥 ) → Σ* 𝑦𝑥 ( vol ‘ 𝑦 ) = Σ* 𝑛 ∈ ℕ ( vol ‘ ( 𝑓𝑛 ) ) )
47 46 adantlr ( ( ( 𝑥 ∈ 𝒫 dom vol ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) ) ∧ 𝑓 : ℕ –1-1-onto𝑥 ) → Σ* 𝑦𝑥 ( vol ‘ 𝑦 ) = Σ* 𝑛 ∈ ℕ ( vol ‘ ( 𝑓𝑛 ) ) )
48 19 ad3antrrr ( ( ( ( 𝑥 ∈ 𝒫 dom vol ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) ) ∧ 𝑓 : ℕ –1-1-onto𝑥 ) ∧ 𝑛 ∈ ℕ ) → 𝑥 ⊆ dom vol )
49 f1of ( 𝑓 : ℕ –1-1-onto𝑥𝑓 : ℕ ⟶ 𝑥 )
50 49 adantl ( ( ( 𝑥 ∈ 𝒫 dom vol ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) ) ∧ 𝑓 : ℕ –1-1-onto𝑥 ) → 𝑓 : ℕ ⟶ 𝑥 )
51 50 ffvelrnda ( ( ( ( 𝑥 ∈ 𝒫 dom vol ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) ) ∧ 𝑓 : ℕ –1-1-onto𝑥 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑓𝑛 ) ∈ 𝑥 )
52 48 51 sseldd ( ( ( ( 𝑥 ∈ 𝒫 dom vol ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) ) ∧ 𝑓 : ℕ –1-1-onto𝑥 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑓𝑛 ) ∈ dom vol )
53 52 ralrimiva ( ( ( 𝑥 ∈ 𝒫 dom vol ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) ) ∧ 𝑓 : ℕ –1-1-onto𝑥 ) → ∀ 𝑛 ∈ ℕ ( 𝑓𝑛 ) ∈ dom vol )
54 simpr ( ( ( 𝑥 ∈ 𝒫 dom vol ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) ) ∧ 𝑓 : ℕ –1-1-onto𝑥 ) → 𝑓 : ℕ –1-1-onto𝑥 )
55 simplrr ( ( ( 𝑥 ∈ 𝒫 dom vol ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) ) ∧ 𝑓 : ℕ –1-1-onto𝑥 ) → Disj 𝑦𝑥 𝑦 )
56 id ( 𝑓 : ℕ –1-1-onto𝑥𝑓 : ℕ –1-1-onto𝑥 )
57 simpr ( ( 𝑓 : ℕ –1-1-onto𝑥𝑦 = ( 𝑓𝑛 ) ) → 𝑦 = ( 𝑓𝑛 ) )
58 56 57 disjrdx ( 𝑓 : ℕ –1-1-onto𝑥 → ( Disj 𝑛 ∈ ℕ ( 𝑓𝑛 ) ↔ Disj 𝑦𝑥 𝑦 ) )
59 58 biimpar ( ( 𝑓 : ℕ –1-1-onto𝑥Disj 𝑦𝑥 𝑦 ) → Disj 𝑛 ∈ ℕ ( 𝑓𝑛 ) )
60 54 55 59 syl2anc ( ( ( 𝑥 ∈ 𝒫 dom vol ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) ) ∧ 𝑓 : ℕ –1-1-onto𝑥 ) → Disj 𝑛 ∈ ℕ ( 𝑓𝑛 ) )
61 voliune ( ( ∀ 𝑛 ∈ ℕ ( 𝑓𝑛 ) ∈ dom vol ∧ Disj 𝑛 ∈ ℕ ( 𝑓𝑛 ) ) → ( vol ‘ 𝑛 ∈ ℕ ( 𝑓𝑛 ) ) = Σ* 𝑛 ∈ ℕ ( vol ‘ ( 𝑓𝑛 ) ) )
62 53 60 61 syl2anc ( ( ( 𝑥 ∈ 𝒫 dom vol ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) ) ∧ 𝑓 : ℕ –1-1-onto𝑥 ) → ( vol ‘ 𝑛 ∈ ℕ ( 𝑓𝑛 ) ) = Σ* 𝑛 ∈ ℕ ( vol ‘ ( 𝑓𝑛 ) ) )
63 f1ofo ( 𝑓 : ℕ –1-1-onto𝑥𝑓 : ℕ –onto𝑥 )
64 63 57 iunrdx ( 𝑓 : ℕ –1-1-onto𝑥 𝑛 ∈ ℕ ( 𝑓𝑛 ) = 𝑦𝑥 𝑦 )
65 64 26 eqtr4di ( 𝑓 : ℕ –1-1-onto𝑥 𝑛 ∈ ℕ ( 𝑓𝑛 ) = 𝑥 )
66 65 fveq2d ( 𝑓 : ℕ –1-1-onto𝑥 → ( vol ‘ 𝑛 ∈ ℕ ( 𝑓𝑛 ) ) = ( vol ‘ 𝑥 ) )
67 66 adantl ( ( ( 𝑥 ∈ 𝒫 dom vol ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) ) ∧ 𝑓 : ℕ –1-1-onto𝑥 ) → ( vol ‘ 𝑛 ∈ ℕ ( 𝑓𝑛 ) ) = ( vol ‘ 𝑥 ) )
68 47 62 67 3eqtr2rd ( ( ( 𝑥 ∈ 𝒫 dom vol ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) ) ∧ 𝑓 : ℕ –1-1-onto𝑥 ) → ( vol ‘ 𝑥 ) = Σ* 𝑦𝑥 ( vol ‘ 𝑦 ) )
69 68 ex ( ( 𝑥 ∈ 𝒫 dom vol ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) ) → ( 𝑓 : ℕ –1-1-onto𝑥 → ( vol ‘ 𝑥 ) = Σ* 𝑦𝑥 ( vol ‘ 𝑦 ) ) )
70 69 exlimdv ( ( 𝑥 ∈ 𝒫 dom vol ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) ) → ( ∃ 𝑓 𝑓 : ℕ –1-1-onto𝑥 → ( vol ‘ 𝑥 ) = Σ* 𝑦𝑥 ( vol ‘ 𝑦 ) ) )
71 70 imp ( ( ( 𝑥 ∈ 𝒫 dom vol ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) ) ∧ ∃ 𝑓 𝑓 : ℕ –1-1-onto𝑥 ) → ( vol ‘ 𝑥 ) = Σ* 𝑦𝑥 ( vol ‘ 𝑦 ) )
72 31 71 sylan2b ( ( ( 𝑥 ∈ 𝒫 dom vol ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) ) ∧ ℕ ≈ 𝑥 ) → ( vol ‘ 𝑥 ) = Σ* 𝑦𝑥 ( vol ‘ 𝑦 ) )
73 brdom2 ( 𝑥 ≼ ω ↔ ( 𝑥 ≺ ω ∨ 𝑥 ≈ ω ) )
74 73 biimpi ( 𝑥 ≼ ω → ( 𝑥 ≺ ω ∨ 𝑥 ≈ ω ) )
75 isfinite2 ( 𝑥 ≺ ω → 𝑥 ∈ Fin )
76 ensymb ( 𝑥 ≈ ω ↔ ω ≈ 𝑥 )
77 nnenom ℕ ≈ ω
78 entr ( ( ℕ ≈ ω ∧ ω ≈ 𝑥 ) → ℕ ≈ 𝑥 )
79 77 78 mpan ( ω ≈ 𝑥 → ℕ ≈ 𝑥 )
80 76 79 sylbi ( 𝑥 ≈ ω → ℕ ≈ 𝑥 )
81 75 80 orim12i ( ( 𝑥 ≺ ω ∨ 𝑥 ≈ ω ) → ( 𝑥 ∈ Fin ∨ ℕ ≈ 𝑥 ) )
82 74 81 syl ( 𝑥 ≼ ω → ( 𝑥 ∈ Fin ∨ ℕ ≈ 𝑥 ) )
83 82 ad2antrl ( ( 𝑥 ∈ 𝒫 dom vol ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) ) → ( 𝑥 ∈ Fin ∨ ℕ ≈ 𝑥 ) )
84 30 72 83 mpjaodan ( ( 𝑥 ∈ 𝒫 dom vol ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) ) → ( vol ‘ 𝑥 ) = Σ* 𝑦𝑥 ( vol ‘ 𝑦 ) )
85 84 ex ( 𝑥 ∈ 𝒫 dom vol → ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( vol ‘ 𝑥 ) = Σ* 𝑦𝑥 ( vol ‘ 𝑦 ) ) )
86 85 rgen 𝑥 ∈ 𝒫 dom vol ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( vol ‘ 𝑥 ) = Σ* 𝑦𝑥 ( vol ‘ 𝑦 ) )
87 ismeas ( dom vol ∈ ran sigAlgebra → ( vol ∈ ( measures ‘ dom vol ) ↔ ( vol : dom vol ⟶ ( 0 [,] +∞ ) ∧ ( vol ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 dom vol ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( vol ‘ 𝑥 ) = Σ* 𝑦𝑥 ( vol ‘ 𝑦 ) ) ) ) )
88 4 87 ax-mp ( vol ∈ ( measures ‘ dom vol ) ↔ ( vol : dom vol ⟶ ( 0 [,] +∞ ) ∧ ( vol ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 dom vol ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( vol ‘ 𝑥 ) = Σ* 𝑦𝑥 ( vol ‘ 𝑦 ) ) ) )
89 1 10 86 88 mpbir3an vol ∈ ( measures ‘ dom vol )