| Step | Hyp | Ref | Expression | 
						
							| 1 |  | volf | ⊢ vol : dom  vol ⟶ ( 0 [,] +∞ ) | 
						
							| 2 |  | fvssunirn | ⊢ ( sigAlgebra ‘ ℝ )  ⊆  ∪  ran  sigAlgebra | 
						
							| 3 |  | dmvlsiga | ⊢ dom  vol  ∈  ( sigAlgebra ‘ ℝ ) | 
						
							| 4 | 2 3 | sselii | ⊢ dom  vol  ∈  ∪  ran  sigAlgebra | 
						
							| 5 |  | 0elsiga | ⊢ ( dom  vol  ∈  ∪  ran  sigAlgebra  →  ∅  ∈  dom  vol ) | 
						
							| 6 | 4 5 | ax-mp | ⊢ ∅  ∈  dom  vol | 
						
							| 7 |  | mblvol | ⊢ ( ∅  ∈  dom  vol  →  ( vol ‘ ∅ )  =  ( vol* ‘ ∅ ) ) | 
						
							| 8 | 6 7 | ax-mp | ⊢ ( vol ‘ ∅ )  =  ( vol* ‘ ∅ ) | 
						
							| 9 |  | ovol0 | ⊢ ( vol* ‘ ∅ )  =  0 | 
						
							| 10 | 8 9 | eqtri | ⊢ ( vol ‘ ∅ )  =  0 | 
						
							| 11 |  | simpr | ⊢ ( ( ( 𝑥  ∈  𝒫  dom  vol  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  ∧  𝑥  ∈  Fin )  →  𝑥  ∈  Fin ) | 
						
							| 12 |  | nfv | ⊢ Ⅎ 𝑦 𝑥  ∈  𝒫  dom  vol | 
						
							| 13 |  | nfv | ⊢ Ⅎ 𝑦 𝑥  ≼  ω | 
						
							| 14 |  | nfdisj1 | ⊢ Ⅎ 𝑦 Disj  𝑦  ∈  𝑥 𝑦 | 
						
							| 15 | 13 14 | nfan | ⊢ Ⅎ 𝑦 ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) | 
						
							| 16 | 12 15 | nfan | ⊢ Ⅎ 𝑦 ( 𝑥  ∈  𝒫  dom  vol  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) ) | 
						
							| 17 |  | nfv | ⊢ Ⅎ 𝑦 𝑥  ∈  Fin | 
						
							| 18 | 16 17 | nfan | ⊢ Ⅎ 𝑦 ( ( 𝑥  ∈  𝒫  dom  vol  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  ∧  𝑥  ∈  Fin ) | 
						
							| 19 |  | elpwi | ⊢ ( 𝑥  ∈  𝒫  dom  vol  →  𝑥  ⊆  dom  vol ) | 
						
							| 20 | 19 | ad3antrrr | ⊢ ( ( ( ( 𝑥  ∈  𝒫  dom  vol  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  ∧  𝑥  ∈  Fin )  ∧  𝑦  ∈  𝑥 )  →  𝑥  ⊆  dom  vol ) | 
						
							| 21 |  | simpr | ⊢ ( ( ( ( 𝑥  ∈  𝒫  dom  vol  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  ∧  𝑥  ∈  Fin )  ∧  𝑦  ∈  𝑥 )  →  𝑦  ∈  𝑥 ) | 
						
							| 22 | 20 21 | sseldd | ⊢ ( ( ( ( 𝑥  ∈  𝒫  dom  vol  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  ∧  𝑥  ∈  Fin )  ∧  𝑦  ∈  𝑥 )  →  𝑦  ∈  dom  vol ) | 
						
							| 23 | 22 | ex | ⊢ ( ( ( 𝑥  ∈  𝒫  dom  vol  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  ∧  𝑥  ∈  Fin )  →  ( 𝑦  ∈  𝑥  →  𝑦  ∈  dom  vol ) ) | 
						
							| 24 | 18 23 | ralrimi | ⊢ ( ( ( 𝑥  ∈  𝒫  dom  vol  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  ∧  𝑥  ∈  Fin )  →  ∀ 𝑦  ∈  𝑥 𝑦  ∈  dom  vol ) | 
						
							| 25 |  | simplrr | ⊢ ( ( ( 𝑥  ∈  𝒫  dom  vol  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  ∧  𝑥  ∈  Fin )  →  Disj  𝑦  ∈  𝑥 𝑦 ) | 
						
							| 26 |  | uniiun | ⊢ ∪  𝑥  =  ∪  𝑦  ∈  𝑥 𝑦 | 
						
							| 27 | 26 | fveq2i | ⊢ ( vol ‘ ∪  𝑥 )  =  ( vol ‘ ∪  𝑦  ∈  𝑥 𝑦 ) | 
						
							| 28 |  | volfiniune | ⊢ ( ( 𝑥  ∈  Fin  ∧  ∀ 𝑦  ∈  𝑥 𝑦  ∈  dom  vol  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ( vol ‘ ∪  𝑦  ∈  𝑥 𝑦 )  =  Σ* 𝑦  ∈  𝑥 ( vol ‘ 𝑦 ) ) | 
						
							| 29 | 27 28 | eqtrid | ⊢ ( ( 𝑥  ∈  Fin  ∧  ∀ 𝑦  ∈  𝑥 𝑦  ∈  dom  vol  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ( vol ‘ ∪  𝑥 )  =  Σ* 𝑦  ∈  𝑥 ( vol ‘ 𝑦 ) ) | 
						
							| 30 | 11 24 25 29 | syl3anc | ⊢ ( ( ( 𝑥  ∈  𝒫  dom  vol  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  ∧  𝑥  ∈  Fin )  →  ( vol ‘ ∪  𝑥 )  =  Σ* 𝑦  ∈  𝑥 ( vol ‘ 𝑦 ) ) | 
						
							| 31 |  | bren | ⊢ ( ℕ  ≈  𝑥  ↔  ∃ 𝑓 𝑓 : ℕ –1-1-onto→ 𝑥 ) | 
						
							| 32 |  | nfv | ⊢ Ⅎ 𝑛 ( 𝑥  ∈  𝒫  dom  vol  ∧  𝑓 : ℕ –1-1-onto→ 𝑥 ) | 
						
							| 33 |  | nfcv | ⊢ Ⅎ 𝑛 ( vol ‘ 𝑦 ) | 
						
							| 34 |  | nfcv | ⊢ Ⅎ 𝑦 ( vol ‘ ( 𝑓 ‘ 𝑛 ) ) | 
						
							| 35 |  | nfcv | ⊢ Ⅎ 𝑛 𝑥 | 
						
							| 36 |  | nfcv | ⊢ Ⅎ 𝑛 ℕ | 
						
							| 37 |  | nfcv | ⊢ Ⅎ 𝑛 𝑓 | 
						
							| 38 |  | fveq2 | ⊢ ( 𝑦  =  ( 𝑓 ‘ 𝑛 )  →  ( vol ‘ 𝑦 )  =  ( vol ‘ ( 𝑓 ‘ 𝑛 ) ) ) | 
						
							| 39 |  | simpl | ⊢ ( ( 𝑥  ∈  𝒫  dom  vol  ∧  𝑓 : ℕ –1-1-onto→ 𝑥 )  →  𝑥  ∈  𝒫  dom  vol ) | 
						
							| 40 |  | simpr | ⊢ ( ( 𝑥  ∈  𝒫  dom  vol  ∧  𝑓 : ℕ –1-1-onto→ 𝑥 )  →  𝑓 : ℕ –1-1-onto→ 𝑥 ) | 
						
							| 41 |  | eqidd | ⊢ ( ( ( 𝑥  ∈  𝒫  dom  vol  ∧  𝑓 : ℕ –1-1-onto→ 𝑥 )  ∧  𝑛  ∈  ℕ )  →  ( 𝑓 ‘ 𝑛 )  =  ( 𝑓 ‘ 𝑛 ) ) | 
						
							| 42 | 1 | a1i | ⊢ ( ( ( 𝑥  ∈  𝒫  dom  vol  ∧  𝑓 : ℕ –1-1-onto→ 𝑥 )  ∧  𝑦  ∈  𝑥 )  →  vol : dom  vol ⟶ ( 0 [,] +∞ ) ) | 
						
							| 43 | 39 19 | syl | ⊢ ( ( 𝑥  ∈  𝒫  dom  vol  ∧  𝑓 : ℕ –1-1-onto→ 𝑥 )  →  𝑥  ⊆  dom  vol ) | 
						
							| 44 | 43 | sselda | ⊢ ( ( ( 𝑥  ∈  𝒫  dom  vol  ∧  𝑓 : ℕ –1-1-onto→ 𝑥 )  ∧  𝑦  ∈  𝑥 )  →  𝑦  ∈  dom  vol ) | 
						
							| 45 | 42 44 | ffvelcdmd | ⊢ ( ( ( 𝑥  ∈  𝒫  dom  vol  ∧  𝑓 : ℕ –1-1-onto→ 𝑥 )  ∧  𝑦  ∈  𝑥 )  →  ( vol ‘ 𝑦 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 46 | 32 33 34 35 36 37 38 39 40 41 45 | esumf1o | ⊢ ( ( 𝑥  ∈  𝒫  dom  vol  ∧  𝑓 : ℕ –1-1-onto→ 𝑥 )  →  Σ* 𝑦  ∈  𝑥 ( vol ‘ 𝑦 )  =  Σ* 𝑛  ∈  ℕ ( vol ‘ ( 𝑓 ‘ 𝑛 ) ) ) | 
						
							| 47 | 46 | adantlr | ⊢ ( ( ( 𝑥  ∈  𝒫  dom  vol  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  ∧  𝑓 : ℕ –1-1-onto→ 𝑥 )  →  Σ* 𝑦  ∈  𝑥 ( vol ‘ 𝑦 )  =  Σ* 𝑛  ∈  ℕ ( vol ‘ ( 𝑓 ‘ 𝑛 ) ) ) | 
						
							| 48 | 19 | ad3antrrr | ⊢ ( ( ( ( 𝑥  ∈  𝒫  dom  vol  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  ∧  𝑓 : ℕ –1-1-onto→ 𝑥 )  ∧  𝑛  ∈  ℕ )  →  𝑥  ⊆  dom  vol ) | 
						
							| 49 |  | f1of | ⊢ ( 𝑓 : ℕ –1-1-onto→ 𝑥  →  𝑓 : ℕ ⟶ 𝑥 ) | 
						
							| 50 | 49 | adantl | ⊢ ( ( ( 𝑥  ∈  𝒫  dom  vol  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  ∧  𝑓 : ℕ –1-1-onto→ 𝑥 )  →  𝑓 : ℕ ⟶ 𝑥 ) | 
						
							| 51 | 50 | ffvelcdmda | ⊢ ( ( ( ( 𝑥  ∈  𝒫  dom  vol  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  ∧  𝑓 : ℕ –1-1-onto→ 𝑥 )  ∧  𝑛  ∈  ℕ )  →  ( 𝑓 ‘ 𝑛 )  ∈  𝑥 ) | 
						
							| 52 | 48 51 | sseldd | ⊢ ( ( ( ( 𝑥  ∈  𝒫  dom  vol  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  ∧  𝑓 : ℕ –1-1-onto→ 𝑥 )  ∧  𝑛  ∈  ℕ )  →  ( 𝑓 ‘ 𝑛 )  ∈  dom  vol ) | 
						
							| 53 | 52 | ralrimiva | ⊢ ( ( ( 𝑥  ∈  𝒫  dom  vol  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  ∧  𝑓 : ℕ –1-1-onto→ 𝑥 )  →  ∀ 𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 )  ∈  dom  vol ) | 
						
							| 54 |  | simpr | ⊢ ( ( ( 𝑥  ∈  𝒫  dom  vol  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  ∧  𝑓 : ℕ –1-1-onto→ 𝑥 )  →  𝑓 : ℕ –1-1-onto→ 𝑥 ) | 
						
							| 55 |  | simplrr | ⊢ ( ( ( 𝑥  ∈  𝒫  dom  vol  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  ∧  𝑓 : ℕ –1-1-onto→ 𝑥 )  →  Disj  𝑦  ∈  𝑥 𝑦 ) | 
						
							| 56 |  | id | ⊢ ( 𝑓 : ℕ –1-1-onto→ 𝑥  →  𝑓 : ℕ –1-1-onto→ 𝑥 ) | 
						
							| 57 |  | simpr | ⊢ ( ( 𝑓 : ℕ –1-1-onto→ 𝑥  ∧  𝑦  =  ( 𝑓 ‘ 𝑛 ) )  →  𝑦  =  ( 𝑓 ‘ 𝑛 ) ) | 
						
							| 58 | 56 57 | disjrdx | ⊢ ( 𝑓 : ℕ –1-1-onto→ 𝑥  →  ( Disj  𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 )  ↔  Disj  𝑦  ∈  𝑥 𝑦 ) ) | 
						
							| 59 | 58 | biimpar | ⊢ ( ( 𝑓 : ℕ –1-1-onto→ 𝑥  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  Disj  𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 ) ) | 
						
							| 60 | 54 55 59 | syl2anc | ⊢ ( ( ( 𝑥  ∈  𝒫  dom  vol  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  ∧  𝑓 : ℕ –1-1-onto→ 𝑥 )  →  Disj  𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 ) ) | 
						
							| 61 |  | voliune | ⊢ ( ( ∀ 𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 )  ∈  dom  vol  ∧  Disj  𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 ) )  →  ( vol ‘ ∪  𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 ) )  =  Σ* 𝑛  ∈  ℕ ( vol ‘ ( 𝑓 ‘ 𝑛 ) ) ) | 
						
							| 62 | 53 60 61 | syl2anc | ⊢ ( ( ( 𝑥  ∈  𝒫  dom  vol  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  ∧  𝑓 : ℕ –1-1-onto→ 𝑥 )  →  ( vol ‘ ∪  𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 ) )  =  Σ* 𝑛  ∈  ℕ ( vol ‘ ( 𝑓 ‘ 𝑛 ) ) ) | 
						
							| 63 |  | f1ofo | ⊢ ( 𝑓 : ℕ –1-1-onto→ 𝑥  →  𝑓 : ℕ –onto→ 𝑥 ) | 
						
							| 64 | 63 57 | iunrdx | ⊢ ( 𝑓 : ℕ –1-1-onto→ 𝑥  →  ∪  𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 )  =  ∪  𝑦  ∈  𝑥 𝑦 ) | 
						
							| 65 | 64 26 | eqtr4di | ⊢ ( 𝑓 : ℕ –1-1-onto→ 𝑥  →  ∪  𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 )  =  ∪  𝑥 ) | 
						
							| 66 | 65 | fveq2d | ⊢ ( 𝑓 : ℕ –1-1-onto→ 𝑥  →  ( vol ‘ ∪  𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 ) )  =  ( vol ‘ ∪  𝑥 ) ) | 
						
							| 67 | 66 | adantl | ⊢ ( ( ( 𝑥  ∈  𝒫  dom  vol  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  ∧  𝑓 : ℕ –1-1-onto→ 𝑥 )  →  ( vol ‘ ∪  𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 ) )  =  ( vol ‘ ∪  𝑥 ) ) | 
						
							| 68 | 47 62 67 | 3eqtr2rd | ⊢ ( ( ( 𝑥  ∈  𝒫  dom  vol  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  ∧  𝑓 : ℕ –1-1-onto→ 𝑥 )  →  ( vol ‘ ∪  𝑥 )  =  Σ* 𝑦  ∈  𝑥 ( vol ‘ 𝑦 ) ) | 
						
							| 69 | 68 | ex | ⊢ ( ( 𝑥  ∈  𝒫  dom  vol  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  →  ( 𝑓 : ℕ –1-1-onto→ 𝑥  →  ( vol ‘ ∪  𝑥 )  =  Σ* 𝑦  ∈  𝑥 ( vol ‘ 𝑦 ) ) ) | 
						
							| 70 | 69 | exlimdv | ⊢ ( ( 𝑥  ∈  𝒫  dom  vol  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  →  ( ∃ 𝑓 𝑓 : ℕ –1-1-onto→ 𝑥  →  ( vol ‘ ∪  𝑥 )  =  Σ* 𝑦  ∈  𝑥 ( vol ‘ 𝑦 ) ) ) | 
						
							| 71 | 70 | imp | ⊢ ( ( ( 𝑥  ∈  𝒫  dom  vol  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  ∧  ∃ 𝑓 𝑓 : ℕ –1-1-onto→ 𝑥 )  →  ( vol ‘ ∪  𝑥 )  =  Σ* 𝑦  ∈  𝑥 ( vol ‘ 𝑦 ) ) | 
						
							| 72 | 31 71 | sylan2b | ⊢ ( ( ( 𝑥  ∈  𝒫  dom  vol  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  ∧  ℕ  ≈  𝑥 )  →  ( vol ‘ ∪  𝑥 )  =  Σ* 𝑦  ∈  𝑥 ( vol ‘ 𝑦 ) ) | 
						
							| 73 |  | brdom2 | ⊢ ( 𝑥  ≼  ω  ↔  ( 𝑥  ≺  ω  ∨  𝑥  ≈  ω ) ) | 
						
							| 74 | 73 | biimpi | ⊢ ( 𝑥  ≼  ω  →  ( 𝑥  ≺  ω  ∨  𝑥  ≈  ω ) ) | 
						
							| 75 |  | isfinite2 | ⊢ ( 𝑥  ≺  ω  →  𝑥  ∈  Fin ) | 
						
							| 76 |  | ensymb | ⊢ ( 𝑥  ≈  ω  ↔  ω  ≈  𝑥 ) | 
						
							| 77 |  | nnenom | ⊢ ℕ  ≈  ω | 
						
							| 78 |  | entr | ⊢ ( ( ℕ  ≈  ω  ∧  ω  ≈  𝑥 )  →  ℕ  ≈  𝑥 ) | 
						
							| 79 | 77 78 | mpan | ⊢ ( ω  ≈  𝑥  →  ℕ  ≈  𝑥 ) | 
						
							| 80 | 76 79 | sylbi | ⊢ ( 𝑥  ≈  ω  →  ℕ  ≈  𝑥 ) | 
						
							| 81 | 75 80 | orim12i | ⊢ ( ( 𝑥  ≺  ω  ∨  𝑥  ≈  ω )  →  ( 𝑥  ∈  Fin  ∨  ℕ  ≈  𝑥 ) ) | 
						
							| 82 | 74 81 | syl | ⊢ ( 𝑥  ≼  ω  →  ( 𝑥  ∈  Fin  ∨  ℕ  ≈  𝑥 ) ) | 
						
							| 83 | 82 | ad2antrl | ⊢ ( ( 𝑥  ∈  𝒫  dom  vol  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  →  ( 𝑥  ∈  Fin  ∨  ℕ  ≈  𝑥 ) ) | 
						
							| 84 | 30 72 83 | mpjaodan | ⊢ ( ( 𝑥  ∈  𝒫  dom  vol  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  →  ( vol ‘ ∪  𝑥 )  =  Σ* 𝑦  ∈  𝑥 ( vol ‘ 𝑦 ) ) | 
						
							| 85 | 84 | ex | ⊢ ( 𝑥  ∈  𝒫  dom  vol  →  ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ( vol ‘ ∪  𝑥 )  =  Σ* 𝑦  ∈  𝑥 ( vol ‘ 𝑦 ) ) ) | 
						
							| 86 | 85 | rgen | ⊢ ∀ 𝑥  ∈  𝒫  dom  vol ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ( vol ‘ ∪  𝑥 )  =  Σ* 𝑦  ∈  𝑥 ( vol ‘ 𝑦 ) ) | 
						
							| 87 |  | ismeas | ⊢ ( dom  vol  ∈  ∪  ran  sigAlgebra  →  ( vol  ∈  ( measures ‘ dom  vol )  ↔  ( vol : dom  vol ⟶ ( 0 [,] +∞ )  ∧  ( vol ‘ ∅ )  =  0  ∧  ∀ 𝑥  ∈  𝒫  dom  vol ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ( vol ‘ ∪  𝑥 )  =  Σ* 𝑦  ∈  𝑥 ( vol ‘ 𝑦 ) ) ) ) ) | 
						
							| 88 | 4 87 | ax-mp | ⊢ ( vol  ∈  ( measures ‘ dom  vol )  ↔  ( vol : dom  vol ⟶ ( 0 [,] +∞ )  ∧  ( vol ‘ ∅ )  =  0  ∧  ∀ 𝑥  ∈  𝒫  dom  vol ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ( vol ‘ ∪  𝑥 )  =  Σ* 𝑦  ∈  𝑥 ( vol ‘ 𝑦 ) ) ) ) | 
						
							| 89 | 1 10 86 88 | mpbir3an | ⊢ vol  ∈  ( measures ‘ dom  vol ) |