| Step |
Hyp |
Ref |
Expression |
| 1 |
|
volf |
⊢ vol : dom vol ⟶ ( 0 [,] +∞ ) |
| 2 |
|
fvssunirn |
⊢ ( sigAlgebra ‘ ℝ ) ⊆ ∪ ran sigAlgebra |
| 3 |
|
dmvlsiga |
⊢ dom vol ∈ ( sigAlgebra ‘ ℝ ) |
| 4 |
2 3
|
sselii |
⊢ dom vol ∈ ∪ ran sigAlgebra |
| 5 |
|
0elsiga |
⊢ ( dom vol ∈ ∪ ran sigAlgebra → ∅ ∈ dom vol ) |
| 6 |
4 5
|
ax-mp |
⊢ ∅ ∈ dom vol |
| 7 |
|
mblvol |
⊢ ( ∅ ∈ dom vol → ( vol ‘ ∅ ) = ( vol* ‘ ∅ ) ) |
| 8 |
6 7
|
ax-mp |
⊢ ( vol ‘ ∅ ) = ( vol* ‘ ∅ ) |
| 9 |
|
ovol0 |
⊢ ( vol* ‘ ∅ ) = 0 |
| 10 |
8 9
|
eqtri |
⊢ ( vol ‘ ∅ ) = 0 |
| 11 |
|
simpr |
⊢ ( ( ( 𝑥 ∈ 𝒫 dom vol ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑥 ∈ Fin ) → 𝑥 ∈ Fin ) |
| 12 |
|
nfv |
⊢ Ⅎ 𝑦 𝑥 ∈ 𝒫 dom vol |
| 13 |
|
nfv |
⊢ Ⅎ 𝑦 𝑥 ≼ ω |
| 14 |
|
nfdisj1 |
⊢ Ⅎ 𝑦 Disj 𝑦 ∈ 𝑥 𝑦 |
| 15 |
13 14
|
nfan |
⊢ Ⅎ 𝑦 ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) |
| 16 |
12 15
|
nfan |
⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝒫 dom vol ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) |
| 17 |
|
nfv |
⊢ Ⅎ 𝑦 𝑥 ∈ Fin |
| 18 |
16 17
|
nfan |
⊢ Ⅎ 𝑦 ( ( 𝑥 ∈ 𝒫 dom vol ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑥 ∈ Fin ) |
| 19 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 dom vol → 𝑥 ⊆ dom vol ) |
| 20 |
19
|
ad3antrrr |
⊢ ( ( ( ( 𝑥 ∈ 𝒫 dom vol ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑥 ∈ Fin ) ∧ 𝑦 ∈ 𝑥 ) → 𝑥 ⊆ dom vol ) |
| 21 |
|
simpr |
⊢ ( ( ( ( 𝑥 ∈ 𝒫 dom vol ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑥 ∈ Fin ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝑥 ) |
| 22 |
20 21
|
sseldd |
⊢ ( ( ( ( 𝑥 ∈ 𝒫 dom vol ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑥 ∈ Fin ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ dom vol ) |
| 23 |
22
|
ex |
⊢ ( ( ( 𝑥 ∈ 𝒫 dom vol ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑥 ∈ Fin ) → ( 𝑦 ∈ 𝑥 → 𝑦 ∈ dom vol ) ) |
| 24 |
18 23
|
ralrimi |
⊢ ( ( ( 𝑥 ∈ 𝒫 dom vol ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑥 ∈ Fin ) → ∀ 𝑦 ∈ 𝑥 𝑦 ∈ dom vol ) |
| 25 |
|
simplrr |
⊢ ( ( ( 𝑥 ∈ 𝒫 dom vol ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑥 ∈ Fin ) → Disj 𝑦 ∈ 𝑥 𝑦 ) |
| 26 |
|
uniiun |
⊢ ∪ 𝑥 = ∪ 𝑦 ∈ 𝑥 𝑦 |
| 27 |
26
|
fveq2i |
⊢ ( vol ‘ ∪ 𝑥 ) = ( vol ‘ ∪ 𝑦 ∈ 𝑥 𝑦 ) |
| 28 |
|
volfiniune |
⊢ ( ( 𝑥 ∈ Fin ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ dom vol ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( vol ‘ ∪ 𝑦 ∈ 𝑥 𝑦 ) = Σ* 𝑦 ∈ 𝑥 ( vol ‘ 𝑦 ) ) |
| 29 |
27 28
|
eqtrid |
⊢ ( ( 𝑥 ∈ Fin ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ dom vol ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( vol ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( vol ‘ 𝑦 ) ) |
| 30 |
11 24 25 29
|
syl3anc |
⊢ ( ( ( 𝑥 ∈ 𝒫 dom vol ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑥 ∈ Fin ) → ( vol ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( vol ‘ 𝑦 ) ) |
| 31 |
|
bren |
⊢ ( ℕ ≈ 𝑥 ↔ ∃ 𝑓 𝑓 : ℕ –1-1-onto→ 𝑥 ) |
| 32 |
|
nfv |
⊢ Ⅎ 𝑛 ( 𝑥 ∈ 𝒫 dom vol ∧ 𝑓 : ℕ –1-1-onto→ 𝑥 ) |
| 33 |
|
nfcv |
⊢ Ⅎ 𝑛 ( vol ‘ 𝑦 ) |
| 34 |
|
nfcv |
⊢ Ⅎ 𝑦 ( vol ‘ ( 𝑓 ‘ 𝑛 ) ) |
| 35 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑥 |
| 36 |
|
nfcv |
⊢ Ⅎ 𝑛 ℕ |
| 37 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑓 |
| 38 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑛 ) → ( vol ‘ 𝑦 ) = ( vol ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
| 39 |
|
simpl |
⊢ ( ( 𝑥 ∈ 𝒫 dom vol ∧ 𝑓 : ℕ –1-1-onto→ 𝑥 ) → 𝑥 ∈ 𝒫 dom vol ) |
| 40 |
|
simpr |
⊢ ( ( 𝑥 ∈ 𝒫 dom vol ∧ 𝑓 : ℕ –1-1-onto→ 𝑥 ) → 𝑓 : ℕ –1-1-onto→ 𝑥 ) |
| 41 |
|
eqidd |
⊢ ( ( ( 𝑥 ∈ 𝒫 dom vol ∧ 𝑓 : ℕ –1-1-onto→ 𝑥 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑓 ‘ 𝑛 ) = ( 𝑓 ‘ 𝑛 ) ) |
| 42 |
1
|
a1i |
⊢ ( ( ( 𝑥 ∈ 𝒫 dom vol ∧ 𝑓 : ℕ –1-1-onto→ 𝑥 ) ∧ 𝑦 ∈ 𝑥 ) → vol : dom vol ⟶ ( 0 [,] +∞ ) ) |
| 43 |
39 19
|
syl |
⊢ ( ( 𝑥 ∈ 𝒫 dom vol ∧ 𝑓 : ℕ –1-1-onto→ 𝑥 ) → 𝑥 ⊆ dom vol ) |
| 44 |
43
|
sselda |
⊢ ( ( ( 𝑥 ∈ 𝒫 dom vol ∧ 𝑓 : ℕ –1-1-onto→ 𝑥 ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ dom vol ) |
| 45 |
42 44
|
ffvelcdmd |
⊢ ( ( ( 𝑥 ∈ 𝒫 dom vol ∧ 𝑓 : ℕ –1-1-onto→ 𝑥 ) ∧ 𝑦 ∈ 𝑥 ) → ( vol ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) ) |
| 46 |
32 33 34 35 36 37 38 39 40 41 45
|
esumf1o |
⊢ ( ( 𝑥 ∈ 𝒫 dom vol ∧ 𝑓 : ℕ –1-1-onto→ 𝑥 ) → Σ* 𝑦 ∈ 𝑥 ( vol ‘ 𝑦 ) = Σ* 𝑛 ∈ ℕ ( vol ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
| 47 |
46
|
adantlr |
⊢ ( ( ( 𝑥 ∈ 𝒫 dom vol ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑓 : ℕ –1-1-onto→ 𝑥 ) → Σ* 𝑦 ∈ 𝑥 ( vol ‘ 𝑦 ) = Σ* 𝑛 ∈ ℕ ( vol ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
| 48 |
19
|
ad3antrrr |
⊢ ( ( ( ( 𝑥 ∈ 𝒫 dom vol ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑓 : ℕ –1-1-onto→ 𝑥 ) ∧ 𝑛 ∈ ℕ ) → 𝑥 ⊆ dom vol ) |
| 49 |
|
f1of |
⊢ ( 𝑓 : ℕ –1-1-onto→ 𝑥 → 𝑓 : ℕ ⟶ 𝑥 ) |
| 50 |
49
|
adantl |
⊢ ( ( ( 𝑥 ∈ 𝒫 dom vol ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑓 : ℕ –1-1-onto→ 𝑥 ) → 𝑓 : ℕ ⟶ 𝑥 ) |
| 51 |
50
|
ffvelcdmda |
⊢ ( ( ( ( 𝑥 ∈ 𝒫 dom vol ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑓 : ℕ –1-1-onto→ 𝑥 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑓 ‘ 𝑛 ) ∈ 𝑥 ) |
| 52 |
48 51
|
sseldd |
⊢ ( ( ( ( 𝑥 ∈ 𝒫 dom vol ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑓 : ℕ –1-1-onto→ 𝑥 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑓 ‘ 𝑛 ) ∈ dom vol ) |
| 53 |
52
|
ralrimiva |
⊢ ( ( ( 𝑥 ∈ 𝒫 dom vol ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑓 : ℕ –1-1-onto→ 𝑥 ) → ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ dom vol ) |
| 54 |
|
simpr |
⊢ ( ( ( 𝑥 ∈ 𝒫 dom vol ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑓 : ℕ –1-1-onto→ 𝑥 ) → 𝑓 : ℕ –1-1-onto→ 𝑥 ) |
| 55 |
|
simplrr |
⊢ ( ( ( 𝑥 ∈ 𝒫 dom vol ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑓 : ℕ –1-1-onto→ 𝑥 ) → Disj 𝑦 ∈ 𝑥 𝑦 ) |
| 56 |
|
id |
⊢ ( 𝑓 : ℕ –1-1-onto→ 𝑥 → 𝑓 : ℕ –1-1-onto→ 𝑥 ) |
| 57 |
|
simpr |
⊢ ( ( 𝑓 : ℕ –1-1-onto→ 𝑥 ∧ 𝑦 = ( 𝑓 ‘ 𝑛 ) ) → 𝑦 = ( 𝑓 ‘ 𝑛 ) ) |
| 58 |
56 57
|
disjrdx |
⊢ ( 𝑓 : ℕ –1-1-onto→ 𝑥 → ( Disj 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ↔ Disj 𝑦 ∈ 𝑥 𝑦 ) ) |
| 59 |
58
|
biimpar |
⊢ ( ( 𝑓 : ℕ –1-1-onto→ 𝑥 ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → Disj 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ) |
| 60 |
54 55 59
|
syl2anc |
⊢ ( ( ( 𝑥 ∈ 𝒫 dom vol ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑓 : ℕ –1-1-onto→ 𝑥 ) → Disj 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ) |
| 61 |
|
voliune |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ dom vol ∧ Disj 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ) → ( vol ‘ ∪ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ) = Σ* 𝑛 ∈ ℕ ( vol ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
| 62 |
53 60 61
|
syl2anc |
⊢ ( ( ( 𝑥 ∈ 𝒫 dom vol ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑓 : ℕ –1-1-onto→ 𝑥 ) → ( vol ‘ ∪ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ) = Σ* 𝑛 ∈ ℕ ( vol ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
| 63 |
|
f1ofo |
⊢ ( 𝑓 : ℕ –1-1-onto→ 𝑥 → 𝑓 : ℕ –onto→ 𝑥 ) |
| 64 |
63 57
|
iunrdx |
⊢ ( 𝑓 : ℕ –1-1-onto→ 𝑥 → ∪ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) = ∪ 𝑦 ∈ 𝑥 𝑦 ) |
| 65 |
64 26
|
eqtr4di |
⊢ ( 𝑓 : ℕ –1-1-onto→ 𝑥 → ∪ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) = ∪ 𝑥 ) |
| 66 |
65
|
fveq2d |
⊢ ( 𝑓 : ℕ –1-1-onto→ 𝑥 → ( vol ‘ ∪ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ) = ( vol ‘ ∪ 𝑥 ) ) |
| 67 |
66
|
adantl |
⊢ ( ( ( 𝑥 ∈ 𝒫 dom vol ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑓 : ℕ –1-1-onto→ 𝑥 ) → ( vol ‘ ∪ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ) = ( vol ‘ ∪ 𝑥 ) ) |
| 68 |
47 62 67
|
3eqtr2rd |
⊢ ( ( ( 𝑥 ∈ 𝒫 dom vol ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑓 : ℕ –1-1-onto→ 𝑥 ) → ( vol ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( vol ‘ 𝑦 ) ) |
| 69 |
68
|
ex |
⊢ ( ( 𝑥 ∈ 𝒫 dom vol ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) → ( 𝑓 : ℕ –1-1-onto→ 𝑥 → ( vol ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( vol ‘ 𝑦 ) ) ) |
| 70 |
69
|
exlimdv |
⊢ ( ( 𝑥 ∈ 𝒫 dom vol ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) → ( ∃ 𝑓 𝑓 : ℕ –1-1-onto→ 𝑥 → ( vol ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( vol ‘ 𝑦 ) ) ) |
| 71 |
70
|
imp |
⊢ ( ( ( 𝑥 ∈ 𝒫 dom vol ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ ∃ 𝑓 𝑓 : ℕ –1-1-onto→ 𝑥 ) → ( vol ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( vol ‘ 𝑦 ) ) |
| 72 |
31 71
|
sylan2b |
⊢ ( ( ( 𝑥 ∈ 𝒫 dom vol ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ ℕ ≈ 𝑥 ) → ( vol ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( vol ‘ 𝑦 ) ) |
| 73 |
|
brdom2 |
⊢ ( 𝑥 ≼ ω ↔ ( 𝑥 ≺ ω ∨ 𝑥 ≈ ω ) ) |
| 74 |
73
|
biimpi |
⊢ ( 𝑥 ≼ ω → ( 𝑥 ≺ ω ∨ 𝑥 ≈ ω ) ) |
| 75 |
|
isfinite2 |
⊢ ( 𝑥 ≺ ω → 𝑥 ∈ Fin ) |
| 76 |
|
ensymb |
⊢ ( 𝑥 ≈ ω ↔ ω ≈ 𝑥 ) |
| 77 |
|
nnenom |
⊢ ℕ ≈ ω |
| 78 |
|
entr |
⊢ ( ( ℕ ≈ ω ∧ ω ≈ 𝑥 ) → ℕ ≈ 𝑥 ) |
| 79 |
77 78
|
mpan |
⊢ ( ω ≈ 𝑥 → ℕ ≈ 𝑥 ) |
| 80 |
76 79
|
sylbi |
⊢ ( 𝑥 ≈ ω → ℕ ≈ 𝑥 ) |
| 81 |
75 80
|
orim12i |
⊢ ( ( 𝑥 ≺ ω ∨ 𝑥 ≈ ω ) → ( 𝑥 ∈ Fin ∨ ℕ ≈ 𝑥 ) ) |
| 82 |
74 81
|
syl |
⊢ ( 𝑥 ≼ ω → ( 𝑥 ∈ Fin ∨ ℕ ≈ 𝑥 ) ) |
| 83 |
82
|
ad2antrl |
⊢ ( ( 𝑥 ∈ 𝒫 dom vol ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) → ( 𝑥 ∈ Fin ∨ ℕ ≈ 𝑥 ) ) |
| 84 |
30 72 83
|
mpjaodan |
⊢ ( ( 𝑥 ∈ 𝒫 dom vol ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) → ( vol ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( vol ‘ 𝑦 ) ) |
| 85 |
84
|
ex |
⊢ ( 𝑥 ∈ 𝒫 dom vol → ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( vol ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( vol ‘ 𝑦 ) ) ) |
| 86 |
85
|
rgen |
⊢ ∀ 𝑥 ∈ 𝒫 dom vol ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( vol ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( vol ‘ 𝑦 ) ) |
| 87 |
|
ismeas |
⊢ ( dom vol ∈ ∪ ran sigAlgebra → ( vol ∈ ( measures ‘ dom vol ) ↔ ( vol : dom vol ⟶ ( 0 [,] +∞ ) ∧ ( vol ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 dom vol ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( vol ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( vol ‘ 𝑦 ) ) ) ) ) |
| 88 |
4 87
|
ax-mp |
⊢ ( vol ∈ ( measures ‘ dom vol ) ↔ ( vol : dom vol ⟶ ( 0 [,] +∞ ) ∧ ( vol ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 dom vol ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( vol ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( vol ‘ 𝑦 ) ) ) ) |
| 89 |
1 10 86 88
|
mpbir3an |
⊢ vol ∈ ( measures ‘ dom vol ) |