| Step | Hyp | Ref | Expression | 
						
							| 1 |  | volf |  | 
						
							| 2 |  | fvssunirn |  | 
						
							| 3 |  | dmvlsiga |  | 
						
							| 4 | 2 3 | sselii |  | 
						
							| 5 |  | 0elsiga |  | 
						
							| 6 | 4 5 | ax-mp |  | 
						
							| 7 |  | mblvol |  | 
						
							| 8 | 6 7 | ax-mp |  | 
						
							| 9 |  | ovol0 |  | 
						
							| 10 | 8 9 | eqtri |  | 
						
							| 11 |  | simpr |  | 
						
							| 12 |  | nfv |  | 
						
							| 13 |  | nfv |  | 
						
							| 14 |  | nfdisj1 |  | 
						
							| 15 | 13 14 | nfan |  | 
						
							| 16 | 12 15 | nfan |  | 
						
							| 17 |  | nfv |  | 
						
							| 18 | 16 17 | nfan |  | 
						
							| 19 |  | elpwi |  | 
						
							| 20 | 19 | ad3antrrr |  | 
						
							| 21 |  | simpr |  | 
						
							| 22 | 20 21 | sseldd |  | 
						
							| 23 | 22 | ex |  | 
						
							| 24 | 18 23 | ralrimi |  | 
						
							| 25 |  | simplrr |  | 
						
							| 26 |  | uniiun |  | 
						
							| 27 | 26 | fveq2i |  | 
						
							| 28 |  | volfiniune |  | 
						
							| 29 | 27 28 | eqtrid |  | 
						
							| 30 | 11 24 25 29 | syl3anc |  | 
						
							| 31 |  | bren |  | 
						
							| 32 |  | nfv |  | 
						
							| 33 |  | nfcv |  | 
						
							| 34 |  | nfcv |  | 
						
							| 35 |  | nfcv |  | 
						
							| 36 |  | nfcv |  | 
						
							| 37 |  | nfcv |  | 
						
							| 38 |  | fveq2 |  | 
						
							| 39 |  | simpl |  | 
						
							| 40 |  | simpr |  | 
						
							| 41 |  | eqidd |  | 
						
							| 42 | 1 | a1i |  | 
						
							| 43 | 39 19 | syl |  | 
						
							| 44 | 43 | sselda |  | 
						
							| 45 | 42 44 | ffvelcdmd |  | 
						
							| 46 | 32 33 34 35 36 37 38 39 40 41 45 | esumf1o |  | 
						
							| 47 | 46 | adantlr |  | 
						
							| 48 | 19 | ad3antrrr |  | 
						
							| 49 |  | f1of |  | 
						
							| 50 | 49 | adantl |  | 
						
							| 51 | 50 | ffvelcdmda |  | 
						
							| 52 | 48 51 | sseldd |  | 
						
							| 53 | 52 | ralrimiva |  | 
						
							| 54 |  | simpr |  | 
						
							| 55 |  | simplrr |  | 
						
							| 56 |  | id |  | 
						
							| 57 |  | simpr |  | 
						
							| 58 | 56 57 | disjrdx |  | 
						
							| 59 | 58 | biimpar |  | 
						
							| 60 | 54 55 59 | syl2anc |  | 
						
							| 61 |  | voliune |  | 
						
							| 62 | 53 60 61 | syl2anc |  | 
						
							| 63 |  | f1ofo |  | 
						
							| 64 | 63 57 | iunrdx |  | 
						
							| 65 | 64 26 | eqtr4di |  | 
						
							| 66 | 65 | fveq2d |  | 
						
							| 67 | 66 | adantl |  | 
						
							| 68 | 47 62 67 | 3eqtr2rd |  | 
						
							| 69 | 68 | ex |  | 
						
							| 70 | 69 | exlimdv |  | 
						
							| 71 | 70 | imp |  | 
						
							| 72 | 31 71 | sylan2b |  | 
						
							| 73 |  | brdom2 |  | 
						
							| 74 | 73 | biimpi |  | 
						
							| 75 |  | isfinite2 |  | 
						
							| 76 |  | ensymb |  | 
						
							| 77 |  | nnenom |  | 
						
							| 78 |  | entr |  | 
						
							| 79 | 77 78 | mpan |  | 
						
							| 80 | 76 79 | sylbi |  | 
						
							| 81 | 75 80 | orim12i |  | 
						
							| 82 | 74 81 | syl |  | 
						
							| 83 | 82 | ad2antrl |  | 
						
							| 84 | 30 72 83 | mpjaodan |  | 
						
							| 85 | 84 | ex |  | 
						
							| 86 | 85 | rgen |  | 
						
							| 87 |  | ismeas |  | 
						
							| 88 | 4 87 | ax-mp |  | 
						
							| 89 | 1 10 86 88 | mpbir3an |  |