Step |
Hyp |
Ref |
Expression |
1 |
|
volf |
|
2 |
|
fvssunirn |
|
3 |
|
dmvlsiga |
|
4 |
2 3
|
sselii |
|
5 |
|
0elsiga |
|
6 |
4 5
|
ax-mp |
|
7 |
|
mblvol |
|
8 |
6 7
|
ax-mp |
|
9 |
|
ovol0 |
|
10 |
8 9
|
eqtri |
|
11 |
|
simpr |
|
12 |
|
nfv |
|
13 |
|
nfv |
|
14 |
|
nfdisj1 |
|
15 |
13 14
|
nfan |
|
16 |
12 15
|
nfan |
|
17 |
|
nfv |
|
18 |
16 17
|
nfan |
|
19 |
|
elpwi |
|
20 |
19
|
ad3antrrr |
|
21 |
|
simpr |
|
22 |
20 21
|
sseldd |
|
23 |
22
|
ex |
|
24 |
18 23
|
ralrimi |
|
25 |
|
simplrr |
|
26 |
|
uniiun |
|
27 |
26
|
fveq2i |
|
28 |
|
volfiniune |
|
29 |
27 28
|
eqtrid |
|
30 |
11 24 25 29
|
syl3anc |
|
31 |
|
bren |
|
32 |
|
nfv |
|
33 |
|
nfcv |
|
34 |
|
nfcv |
|
35 |
|
nfcv |
|
36 |
|
nfcv |
|
37 |
|
nfcv |
|
38 |
|
fveq2 |
|
39 |
|
simpl |
|
40 |
|
simpr |
|
41 |
|
eqidd |
|
42 |
1
|
a1i |
|
43 |
39 19
|
syl |
|
44 |
43
|
sselda |
|
45 |
42 44
|
ffvelrnd |
|
46 |
32 33 34 35 36 37 38 39 40 41 45
|
esumf1o |
|
47 |
46
|
adantlr |
|
48 |
19
|
ad3antrrr |
|
49 |
|
f1of |
|
50 |
49
|
adantl |
|
51 |
50
|
ffvelrnda |
|
52 |
48 51
|
sseldd |
|
53 |
52
|
ralrimiva |
|
54 |
|
simpr |
|
55 |
|
simplrr |
|
56 |
|
id |
|
57 |
|
simpr |
|
58 |
56 57
|
disjrdx |
|
59 |
58
|
biimpar |
|
60 |
54 55 59
|
syl2anc |
|
61 |
|
voliune |
|
62 |
53 60 61
|
syl2anc |
|
63 |
|
f1ofo |
|
64 |
63 57
|
iunrdx |
|
65 |
64 26
|
eqtr4di |
|
66 |
65
|
fveq2d |
|
67 |
66
|
adantl |
|
68 |
47 62 67
|
3eqtr2rd |
|
69 |
68
|
ex |
|
70 |
69
|
exlimdv |
|
71 |
70
|
imp |
|
72 |
31 71
|
sylan2b |
|
73 |
|
brdom2 |
|
74 |
73
|
biimpi |
|
75 |
|
isfinite2 |
|
76 |
|
ensymb |
|
77 |
|
nnenom |
|
78 |
|
entr |
|
79 |
77 78
|
mpan |
|
80 |
76 79
|
sylbi |
|
81 |
75 80
|
orim12i |
|
82 |
74 81
|
syl |
|
83 |
82
|
ad2antrl |
|
84 |
30 72 83
|
mpjaodan |
|
85 |
84
|
ex |
|
86 |
85
|
rgen |
|
87 |
|
ismeas |
|
88 |
4 87
|
ax-mp |
|
89 |
1 10 86 88
|
mpbir3an |
|