| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elzs12 |
⊢ ( 𝐴 ∈ ℤs[1/2] ↔ ∃ 𝑎 ∈ ℤs ∃ 𝑏 ∈ ℕ0s 𝐴 = ( 𝑎 /su ( 2s ↑s 𝑏 ) ) ) |
| 2 |
|
oveq2 |
⊢ ( 𝑐 = 0s → ( 2s ↑s 𝑐 ) = ( 2s ↑s 0s ) ) |
| 3 |
|
2sno |
⊢ 2s ∈ No |
| 4 |
|
exps0 |
⊢ ( 2s ∈ No → ( 2s ↑s 0s ) = 1s ) |
| 5 |
3 4
|
ax-mp |
⊢ ( 2s ↑s 0s ) = 1s |
| 6 |
2 5
|
eqtrdi |
⊢ ( 𝑐 = 0s → ( 2s ↑s 𝑐 ) = 1s ) |
| 7 |
6
|
oveq2d |
⊢ ( 𝑐 = 0s → ( 𝑎 /su ( 2s ↑s 𝑐 ) ) = ( 𝑎 /su 1s ) ) |
| 8 |
7
|
eleq1d |
⊢ ( 𝑐 = 0s → ( ( 𝑎 /su ( 2s ↑s 𝑐 ) ) ∈ ℤs ↔ ( 𝑎 /su 1s ) ∈ ℤs ) ) |
| 9 |
7
|
eqeq1d |
⊢ ( 𝑐 = 0s → ( ( 𝑎 /su ( 2s ↑s 𝑐 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ↔ ( 𝑎 /su 1s ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ) |
| 10 |
9
|
2rexbidv |
⊢ ( 𝑐 = 0s → ( ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑎 /su ( 2s ↑s 𝑐 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ↔ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑎 /su 1s ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ) |
| 11 |
8 10
|
orbi12d |
⊢ ( 𝑐 = 0s → ( ( ( 𝑎 /su ( 2s ↑s 𝑐 ) ) ∈ ℤs ∨ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑎 /su ( 2s ↑s 𝑐 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ↔ ( ( 𝑎 /su 1s ) ∈ ℤs ∨ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑎 /su 1s ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ) ) |
| 12 |
11
|
ralbidv |
⊢ ( 𝑐 = 0s → ( ∀ 𝑎 ∈ ℤs ( ( 𝑎 /su ( 2s ↑s 𝑐 ) ) ∈ ℤs ∨ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑎 /su ( 2s ↑s 𝑐 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ↔ ∀ 𝑎 ∈ ℤs ( ( 𝑎 /su 1s ) ∈ ℤs ∨ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑎 /su 1s ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ) ) |
| 13 |
|
oveq2 |
⊢ ( 𝑐 = 𝑤 → ( 2s ↑s 𝑐 ) = ( 2s ↑s 𝑤 ) ) |
| 14 |
13
|
oveq2d |
⊢ ( 𝑐 = 𝑤 → ( 𝑎 /su ( 2s ↑s 𝑐 ) ) = ( 𝑎 /su ( 2s ↑s 𝑤 ) ) ) |
| 15 |
14
|
eleq1d |
⊢ ( 𝑐 = 𝑤 → ( ( 𝑎 /su ( 2s ↑s 𝑐 ) ) ∈ ℤs ↔ ( 𝑎 /su ( 2s ↑s 𝑤 ) ) ∈ ℤs ) ) |
| 16 |
14
|
eqeq1d |
⊢ ( 𝑐 = 𝑤 → ( ( 𝑎 /su ( 2s ↑s 𝑐 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ↔ ( 𝑎 /su ( 2s ↑s 𝑤 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ) |
| 17 |
16
|
2rexbidv |
⊢ ( 𝑐 = 𝑤 → ( ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑎 /su ( 2s ↑s 𝑐 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ↔ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑎 /su ( 2s ↑s 𝑤 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ) |
| 18 |
15 17
|
orbi12d |
⊢ ( 𝑐 = 𝑤 → ( ( ( 𝑎 /su ( 2s ↑s 𝑐 ) ) ∈ ℤs ∨ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑎 /su ( 2s ↑s 𝑐 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ↔ ( ( 𝑎 /su ( 2s ↑s 𝑤 ) ) ∈ ℤs ∨ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑎 /su ( 2s ↑s 𝑤 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ) ) |
| 19 |
18
|
ralbidv |
⊢ ( 𝑐 = 𝑤 → ( ∀ 𝑎 ∈ ℤs ( ( 𝑎 /su ( 2s ↑s 𝑐 ) ) ∈ ℤs ∨ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑎 /su ( 2s ↑s 𝑐 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ↔ ∀ 𝑎 ∈ ℤs ( ( 𝑎 /su ( 2s ↑s 𝑤 ) ) ∈ ℤs ∨ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑎 /su ( 2s ↑s 𝑤 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ) ) |
| 20 |
|
oveq2 |
⊢ ( 𝑐 = ( 𝑤 +s 1s ) → ( 2s ↑s 𝑐 ) = ( 2s ↑s ( 𝑤 +s 1s ) ) ) |
| 21 |
20
|
oveq2d |
⊢ ( 𝑐 = ( 𝑤 +s 1s ) → ( 𝑎 /su ( 2s ↑s 𝑐 ) ) = ( 𝑎 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) ) |
| 22 |
21
|
eleq1d |
⊢ ( 𝑐 = ( 𝑤 +s 1s ) → ( ( 𝑎 /su ( 2s ↑s 𝑐 ) ) ∈ ℤs ↔ ( 𝑎 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) ∈ ℤs ) ) |
| 23 |
21
|
eqeq1d |
⊢ ( 𝑐 = ( 𝑤 +s 1s ) → ( ( 𝑎 /su ( 2s ↑s 𝑐 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ↔ ( 𝑎 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ) |
| 24 |
23
|
2rexbidv |
⊢ ( 𝑐 = ( 𝑤 +s 1s ) → ( ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑎 /su ( 2s ↑s 𝑐 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ↔ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑎 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ) |
| 25 |
22 24
|
orbi12d |
⊢ ( 𝑐 = ( 𝑤 +s 1s ) → ( ( ( 𝑎 /su ( 2s ↑s 𝑐 ) ) ∈ ℤs ∨ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑎 /su ( 2s ↑s 𝑐 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ↔ ( ( 𝑎 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) ∈ ℤs ∨ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑎 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ) ) |
| 26 |
25
|
ralbidv |
⊢ ( 𝑐 = ( 𝑤 +s 1s ) → ( ∀ 𝑎 ∈ ℤs ( ( 𝑎 /su ( 2s ↑s 𝑐 ) ) ∈ ℤs ∨ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑎 /su ( 2s ↑s 𝑐 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ↔ ∀ 𝑎 ∈ ℤs ( ( 𝑎 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) ∈ ℤs ∨ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑎 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ) ) |
| 27 |
|
oveq1 |
⊢ ( 𝑎 = 𝑏 → ( 𝑎 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( 𝑏 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) ) |
| 28 |
27
|
eleq1d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝑎 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) ∈ ℤs ↔ ( 𝑏 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) ∈ ℤs ) ) |
| 29 |
27
|
eqeq1d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝑎 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ↔ ( 𝑏 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ) |
| 30 |
29
|
2rexbidv |
⊢ ( 𝑎 = 𝑏 → ( ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑎 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ↔ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑏 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ) |
| 31 |
|
oveq2 |
⊢ ( 𝑥 = 𝑝 → ( 2s ·s 𝑥 ) = ( 2s ·s 𝑝 ) ) |
| 32 |
31
|
oveq1d |
⊢ ( 𝑥 = 𝑝 → ( ( 2s ·s 𝑥 ) +s 1s ) = ( ( 2s ·s 𝑝 ) +s 1s ) ) |
| 33 |
32
|
oveq1d |
⊢ ( 𝑥 = 𝑝 → ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) = ( ( ( 2s ·s 𝑝 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) |
| 34 |
33
|
eqeq2d |
⊢ ( 𝑥 = 𝑝 → ( ( 𝑏 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ↔ ( 𝑏 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( ( 2s ·s 𝑝 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ) |
| 35 |
|
oveq2 |
⊢ ( 𝑦 = 𝑞 → ( 2s ↑s 𝑦 ) = ( 2s ↑s 𝑞 ) ) |
| 36 |
35
|
oveq2d |
⊢ ( 𝑦 = 𝑞 → ( ( ( 2s ·s 𝑝 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) = ( ( ( 2s ·s 𝑝 ) +s 1s ) /su ( 2s ↑s 𝑞 ) ) ) |
| 37 |
36
|
eqeq2d |
⊢ ( 𝑦 = 𝑞 → ( ( 𝑏 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( ( 2s ·s 𝑝 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ↔ ( 𝑏 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( ( 2s ·s 𝑝 ) +s 1s ) /su ( 2s ↑s 𝑞 ) ) ) ) |
| 38 |
34 37
|
cbvrex2vw |
⊢ ( ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑏 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ↔ ∃ 𝑝 ∈ ℤs ∃ 𝑞 ∈ ℕs ( 𝑏 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( ( 2s ·s 𝑝 ) +s 1s ) /su ( 2s ↑s 𝑞 ) ) ) |
| 39 |
30 38
|
bitrdi |
⊢ ( 𝑎 = 𝑏 → ( ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑎 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ↔ ∃ 𝑝 ∈ ℤs ∃ 𝑞 ∈ ℕs ( 𝑏 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( ( 2s ·s 𝑝 ) +s 1s ) /su ( 2s ↑s 𝑞 ) ) ) ) |
| 40 |
28 39
|
orbi12d |
⊢ ( 𝑎 = 𝑏 → ( ( ( 𝑎 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) ∈ ℤs ∨ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑎 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ↔ ( ( 𝑏 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) ∈ ℤs ∨ ∃ 𝑝 ∈ ℤs ∃ 𝑞 ∈ ℕs ( 𝑏 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( ( 2s ·s 𝑝 ) +s 1s ) /su ( 2s ↑s 𝑞 ) ) ) ) ) |
| 41 |
40
|
cbvralvw |
⊢ ( ∀ 𝑎 ∈ ℤs ( ( 𝑎 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) ∈ ℤs ∨ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑎 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ↔ ∀ 𝑏 ∈ ℤs ( ( 𝑏 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) ∈ ℤs ∨ ∃ 𝑝 ∈ ℤs ∃ 𝑞 ∈ ℕs ( 𝑏 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( ( 2s ·s 𝑝 ) +s 1s ) /su ( 2s ↑s 𝑞 ) ) ) ) |
| 42 |
26 41
|
bitrdi |
⊢ ( 𝑐 = ( 𝑤 +s 1s ) → ( ∀ 𝑎 ∈ ℤs ( ( 𝑎 /su ( 2s ↑s 𝑐 ) ) ∈ ℤs ∨ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑎 /su ( 2s ↑s 𝑐 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ↔ ∀ 𝑏 ∈ ℤs ( ( 𝑏 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) ∈ ℤs ∨ ∃ 𝑝 ∈ ℤs ∃ 𝑞 ∈ ℕs ( 𝑏 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( ( 2s ·s 𝑝 ) +s 1s ) /su ( 2s ↑s 𝑞 ) ) ) ) ) |
| 43 |
|
oveq2 |
⊢ ( 𝑐 = 𝑏 → ( 2s ↑s 𝑐 ) = ( 2s ↑s 𝑏 ) ) |
| 44 |
43
|
oveq2d |
⊢ ( 𝑐 = 𝑏 → ( 𝑎 /su ( 2s ↑s 𝑐 ) ) = ( 𝑎 /su ( 2s ↑s 𝑏 ) ) ) |
| 45 |
44
|
eleq1d |
⊢ ( 𝑐 = 𝑏 → ( ( 𝑎 /su ( 2s ↑s 𝑐 ) ) ∈ ℤs ↔ ( 𝑎 /su ( 2s ↑s 𝑏 ) ) ∈ ℤs ) ) |
| 46 |
44
|
eqeq1d |
⊢ ( 𝑐 = 𝑏 → ( ( 𝑎 /su ( 2s ↑s 𝑐 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ↔ ( 𝑎 /su ( 2s ↑s 𝑏 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ) |
| 47 |
46
|
2rexbidv |
⊢ ( 𝑐 = 𝑏 → ( ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑎 /su ( 2s ↑s 𝑐 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ↔ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑎 /su ( 2s ↑s 𝑏 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ) |
| 48 |
45 47
|
orbi12d |
⊢ ( 𝑐 = 𝑏 → ( ( ( 𝑎 /su ( 2s ↑s 𝑐 ) ) ∈ ℤs ∨ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑎 /su ( 2s ↑s 𝑐 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ↔ ( ( 𝑎 /su ( 2s ↑s 𝑏 ) ) ∈ ℤs ∨ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑎 /su ( 2s ↑s 𝑏 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ) ) |
| 49 |
48
|
ralbidv |
⊢ ( 𝑐 = 𝑏 → ( ∀ 𝑎 ∈ ℤs ( ( 𝑎 /su ( 2s ↑s 𝑐 ) ) ∈ ℤs ∨ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑎 /su ( 2s ↑s 𝑐 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ↔ ∀ 𝑎 ∈ ℤs ( ( 𝑎 /su ( 2s ↑s 𝑏 ) ) ∈ ℤs ∨ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑎 /su ( 2s ↑s 𝑏 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ) ) |
| 50 |
|
zno |
⊢ ( 𝑎 ∈ ℤs → 𝑎 ∈ No ) |
| 51 |
|
divs1 |
⊢ ( 𝑎 ∈ No → ( 𝑎 /su 1s ) = 𝑎 ) |
| 52 |
50 51
|
syl |
⊢ ( 𝑎 ∈ ℤs → ( 𝑎 /su 1s ) = 𝑎 ) |
| 53 |
|
id |
⊢ ( 𝑎 ∈ ℤs → 𝑎 ∈ ℤs ) |
| 54 |
52 53
|
eqeltrd |
⊢ ( 𝑎 ∈ ℤs → ( 𝑎 /su 1s ) ∈ ℤs ) |
| 55 |
54
|
orcd |
⊢ ( 𝑎 ∈ ℤs → ( ( 𝑎 /su 1s ) ∈ ℤs ∨ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑎 /su 1s ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ) |
| 56 |
55
|
rgen |
⊢ ∀ 𝑎 ∈ ℤs ( ( 𝑎 /su 1s ) ∈ ℤs ∨ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑎 /su 1s ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) |
| 57 |
|
zseo |
⊢ ( 𝑏 ∈ ℤs → ( ∃ 𝑐 ∈ ℤs 𝑏 = ( 2s ·s 𝑐 ) ∨ ∃ 𝑐 ∈ ℤs 𝑏 = ( ( 2s ·s 𝑐 ) +s 1s ) ) ) |
| 58 |
|
oveq1 |
⊢ ( 𝑎 = 𝑐 → ( 𝑎 /su ( 2s ↑s 𝑤 ) ) = ( 𝑐 /su ( 2s ↑s 𝑤 ) ) ) |
| 59 |
58
|
eleq1d |
⊢ ( 𝑎 = 𝑐 → ( ( 𝑎 /su ( 2s ↑s 𝑤 ) ) ∈ ℤs ↔ ( 𝑐 /su ( 2s ↑s 𝑤 ) ) ∈ ℤs ) ) |
| 60 |
58
|
eqeq1d |
⊢ ( 𝑎 = 𝑐 → ( ( 𝑎 /su ( 2s ↑s 𝑤 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ↔ ( 𝑐 /su ( 2s ↑s 𝑤 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ) |
| 61 |
60
|
2rexbidv |
⊢ ( 𝑎 = 𝑐 → ( ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑎 /su ( 2s ↑s 𝑤 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ↔ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑐 /su ( 2s ↑s 𝑤 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ) |
| 62 |
59 61
|
orbi12d |
⊢ ( 𝑎 = 𝑐 → ( ( ( 𝑎 /su ( 2s ↑s 𝑤 ) ) ∈ ℤs ∨ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑎 /su ( 2s ↑s 𝑤 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ↔ ( ( 𝑐 /su ( 2s ↑s 𝑤 ) ) ∈ ℤs ∨ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑐 /su ( 2s ↑s 𝑤 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ) ) |
| 63 |
62
|
rspcv |
⊢ ( 𝑐 ∈ ℤs → ( ∀ 𝑎 ∈ ℤs ( ( 𝑎 /su ( 2s ↑s 𝑤 ) ) ∈ ℤs ∨ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑎 /su ( 2s ↑s 𝑤 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) → ( ( 𝑐 /su ( 2s ↑s 𝑤 ) ) ∈ ℤs ∨ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑐 /su ( 2s ↑s 𝑤 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ) ) |
| 64 |
63
|
adantl |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑐 ∈ ℤs ) → ( ∀ 𝑎 ∈ ℤs ( ( 𝑎 /su ( 2s ↑s 𝑤 ) ) ∈ ℤs ∨ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑎 /su ( 2s ↑s 𝑤 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) → ( ( 𝑐 /su ( 2s ↑s 𝑤 ) ) ∈ ℤs ∨ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑐 /su ( 2s ↑s 𝑤 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ) ) |
| 65 |
33
|
eqeq2d |
⊢ ( 𝑥 = 𝑝 → ( ( 𝑐 /su ( 2s ↑s 𝑤 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ↔ ( 𝑐 /su ( 2s ↑s 𝑤 ) ) = ( ( ( 2s ·s 𝑝 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ) |
| 66 |
36
|
eqeq2d |
⊢ ( 𝑦 = 𝑞 → ( ( 𝑐 /su ( 2s ↑s 𝑤 ) ) = ( ( ( 2s ·s 𝑝 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ↔ ( 𝑐 /su ( 2s ↑s 𝑤 ) ) = ( ( ( 2s ·s 𝑝 ) +s 1s ) /su ( 2s ↑s 𝑞 ) ) ) ) |
| 67 |
65 66
|
cbvrex2vw |
⊢ ( ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑐 /su ( 2s ↑s 𝑤 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ↔ ∃ 𝑝 ∈ ℤs ∃ 𝑞 ∈ ℕs ( 𝑐 /su ( 2s ↑s 𝑤 ) ) = ( ( ( 2s ·s 𝑝 ) +s 1s ) /su ( 2s ↑s 𝑞 ) ) ) |
| 68 |
67
|
orbi2i |
⊢ ( ( ( 𝑐 /su ( 2s ↑s 𝑤 ) ) ∈ ℤs ∨ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑐 /su ( 2s ↑s 𝑤 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ↔ ( ( 𝑐 /su ( 2s ↑s 𝑤 ) ) ∈ ℤs ∨ ∃ 𝑝 ∈ ℤs ∃ 𝑞 ∈ ℕs ( 𝑐 /su ( 2s ↑s 𝑤 ) ) = ( ( ( 2s ·s 𝑝 ) +s 1s ) /su ( 2s ↑s 𝑞 ) ) ) ) |
| 69 |
64 68
|
imbitrdi |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑐 ∈ ℤs ) → ( ∀ 𝑎 ∈ ℤs ( ( 𝑎 /su ( 2s ↑s 𝑤 ) ) ∈ ℤs ∨ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑎 /su ( 2s ↑s 𝑤 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) → ( ( 𝑐 /su ( 2s ↑s 𝑤 ) ) ∈ ℤs ∨ ∃ 𝑝 ∈ ℤs ∃ 𝑞 ∈ ℕs ( 𝑐 /su ( 2s ↑s 𝑤 ) ) = ( ( ( 2s ·s 𝑝 ) +s 1s ) /su ( 2s ↑s 𝑞 ) ) ) ) ) |
| 70 |
69
|
imp |
⊢ ( ( ( 𝑤 ∈ ℕ0s ∧ 𝑐 ∈ ℤs ) ∧ ∀ 𝑎 ∈ ℤs ( ( 𝑎 /su ( 2s ↑s 𝑤 ) ) ∈ ℤs ∨ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑎 /su ( 2s ↑s 𝑤 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ) → ( ( 𝑐 /su ( 2s ↑s 𝑤 ) ) ∈ ℤs ∨ ∃ 𝑝 ∈ ℤs ∃ 𝑞 ∈ ℕs ( 𝑐 /su ( 2s ↑s 𝑤 ) ) = ( ( ( 2s ·s 𝑝 ) +s 1s ) /su ( 2s ↑s 𝑞 ) ) ) ) |
| 71 |
70
|
an32s |
⊢ ( ( ( 𝑤 ∈ ℕ0s ∧ ∀ 𝑎 ∈ ℤs ( ( 𝑎 /su ( 2s ↑s 𝑤 ) ) ∈ ℤs ∨ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑎 /su ( 2s ↑s 𝑤 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ) ∧ 𝑐 ∈ ℤs ) → ( ( 𝑐 /su ( 2s ↑s 𝑤 ) ) ∈ ℤs ∨ ∃ 𝑝 ∈ ℤs ∃ 𝑞 ∈ ℕs ( 𝑐 /su ( 2s ↑s 𝑤 ) ) = ( ( ( 2s ·s 𝑝 ) +s 1s ) /su ( 2s ↑s 𝑞 ) ) ) ) |
| 72 |
|
simpl |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑐 ∈ ℤs ) → 𝑤 ∈ ℕ0s ) |
| 73 |
|
expsp1 |
⊢ ( ( 2s ∈ No ∧ 𝑤 ∈ ℕ0s ) → ( 2s ↑s ( 𝑤 +s 1s ) ) = ( ( 2s ↑s 𝑤 ) ·s 2s ) ) |
| 74 |
3 72 73
|
sylancr |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑐 ∈ ℤs ) → ( 2s ↑s ( 𝑤 +s 1s ) ) = ( ( 2s ↑s 𝑤 ) ·s 2s ) ) |
| 75 |
74
|
oveq1d |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑐 ∈ ℤs ) → ( ( 2s ↑s ( 𝑤 +s 1s ) ) ·s 𝑐 ) = ( ( ( 2s ↑s 𝑤 ) ·s 2s ) ·s 𝑐 ) ) |
| 76 |
|
expscl |
⊢ ( ( 2s ∈ No ∧ 𝑤 ∈ ℕ0s ) → ( 2s ↑s 𝑤 ) ∈ No ) |
| 77 |
3 72 76
|
sylancr |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑐 ∈ ℤs ) → ( 2s ↑s 𝑤 ) ∈ No ) |
| 78 |
3
|
a1i |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑐 ∈ ℤs ) → 2s ∈ No ) |
| 79 |
|
zno |
⊢ ( 𝑐 ∈ ℤs → 𝑐 ∈ No ) |
| 80 |
79
|
adantl |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑐 ∈ ℤs ) → 𝑐 ∈ No ) |
| 81 |
77 78 80
|
mulsassd |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑐 ∈ ℤs ) → ( ( ( 2s ↑s 𝑤 ) ·s 2s ) ·s 𝑐 ) = ( ( 2s ↑s 𝑤 ) ·s ( 2s ·s 𝑐 ) ) ) |
| 82 |
75 81
|
eqtrd |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑐 ∈ ℤs ) → ( ( 2s ↑s ( 𝑤 +s 1s ) ) ·s 𝑐 ) = ( ( 2s ↑s 𝑤 ) ·s ( 2s ·s 𝑐 ) ) ) |
| 83 |
82
|
oveq1d |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑐 ∈ ℤs ) → ( ( ( 2s ↑s ( 𝑤 +s 1s ) ) ·s 𝑐 ) /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( ( 2s ↑s 𝑤 ) ·s ( 2s ·s 𝑐 ) ) /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) ) |
| 84 |
|
peano2n0s |
⊢ ( 𝑤 ∈ ℕ0s → ( 𝑤 +s 1s ) ∈ ℕ0s ) |
| 85 |
84
|
adantr |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑐 ∈ ℤs ) → ( 𝑤 +s 1s ) ∈ ℕ0s ) |
| 86 |
80 85
|
pw2divscan3d |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑐 ∈ ℤs ) → ( ( ( 2s ↑s ( 𝑤 +s 1s ) ) ·s 𝑐 ) /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = 𝑐 ) |
| 87 |
78 80
|
mulscld |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑐 ∈ ℤs ) → ( 2s ·s 𝑐 ) ∈ No ) |
| 88 |
|
expscl |
⊢ ( ( 2s ∈ No ∧ ( 𝑤 +s 1s ) ∈ ℕ0s ) → ( 2s ↑s ( 𝑤 +s 1s ) ) ∈ No ) |
| 89 |
3 85 88
|
sylancr |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑐 ∈ ℤs ) → ( 2s ↑s ( 𝑤 +s 1s ) ) ∈ No ) |
| 90 |
|
2ne0s |
⊢ 2s ≠ 0s |
| 91 |
|
expsne0 |
⊢ ( ( 2s ∈ No ∧ 2s ≠ 0s ∧ ( 𝑤 +s 1s ) ∈ ℕ0s ) → ( 2s ↑s ( 𝑤 +s 1s ) ) ≠ 0s ) |
| 92 |
3 90 85 91
|
mp3an12i |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑐 ∈ ℤs ) → ( 2s ↑s ( 𝑤 +s 1s ) ) ≠ 0s ) |
| 93 |
|
pw2recs |
⊢ ( ( 𝑤 +s 1s ) ∈ ℕ0s → ∃ 𝑥 ∈ No ( ( 2s ↑s ( 𝑤 +s 1s ) ) ·s 𝑥 ) = 1s ) |
| 94 |
85 93
|
syl |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑐 ∈ ℤs ) → ∃ 𝑥 ∈ No ( ( 2s ↑s ( 𝑤 +s 1s ) ) ·s 𝑥 ) = 1s ) |
| 95 |
77 87 89 92 94
|
divsasswd |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑐 ∈ ℤs ) → ( ( ( 2s ↑s 𝑤 ) ·s ( 2s ·s 𝑐 ) ) /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( 2s ↑s 𝑤 ) ·s ( ( 2s ·s 𝑐 ) /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) ) ) |
| 96 |
83 86 95
|
3eqtr3rd |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑐 ∈ ℤs ) → ( ( 2s ↑s 𝑤 ) ·s ( ( 2s ·s 𝑐 ) /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) ) = 𝑐 ) |
| 97 |
87 85
|
pw2divscld |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑐 ∈ ℤs ) → ( ( 2s ·s 𝑐 ) /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) ∈ No ) |
| 98 |
80 97 72
|
pw2divsmuld |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑐 ∈ ℤs ) → ( ( 𝑐 /su ( 2s ↑s 𝑤 ) ) = ( ( 2s ·s 𝑐 ) /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) ↔ ( ( 2s ↑s 𝑤 ) ·s ( ( 2s ·s 𝑐 ) /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) ) = 𝑐 ) ) |
| 99 |
96 98
|
mpbird |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑐 ∈ ℤs ) → ( 𝑐 /su ( 2s ↑s 𝑤 ) ) = ( ( 2s ·s 𝑐 ) /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) ) |
| 100 |
99
|
eqcomd |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑐 ∈ ℤs ) → ( ( 2s ·s 𝑐 ) /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( 𝑐 /su ( 2s ↑s 𝑤 ) ) ) |
| 101 |
100
|
eleq1d |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑐 ∈ ℤs ) → ( ( ( 2s ·s 𝑐 ) /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) ∈ ℤs ↔ ( 𝑐 /su ( 2s ↑s 𝑤 ) ) ∈ ℤs ) ) |
| 102 |
100
|
eqeq1d |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑐 ∈ ℤs ) → ( ( ( 2s ·s 𝑐 ) /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( ( 2s ·s 𝑝 ) +s 1s ) /su ( 2s ↑s 𝑞 ) ) ↔ ( 𝑐 /su ( 2s ↑s 𝑤 ) ) = ( ( ( 2s ·s 𝑝 ) +s 1s ) /su ( 2s ↑s 𝑞 ) ) ) ) |
| 103 |
102
|
2rexbidv |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑐 ∈ ℤs ) → ( ∃ 𝑝 ∈ ℤs ∃ 𝑞 ∈ ℕs ( ( 2s ·s 𝑐 ) /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( ( 2s ·s 𝑝 ) +s 1s ) /su ( 2s ↑s 𝑞 ) ) ↔ ∃ 𝑝 ∈ ℤs ∃ 𝑞 ∈ ℕs ( 𝑐 /su ( 2s ↑s 𝑤 ) ) = ( ( ( 2s ·s 𝑝 ) +s 1s ) /su ( 2s ↑s 𝑞 ) ) ) ) |
| 104 |
101 103
|
orbi12d |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑐 ∈ ℤs ) → ( ( ( ( 2s ·s 𝑐 ) /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) ∈ ℤs ∨ ∃ 𝑝 ∈ ℤs ∃ 𝑞 ∈ ℕs ( ( 2s ·s 𝑐 ) /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( ( 2s ·s 𝑝 ) +s 1s ) /su ( 2s ↑s 𝑞 ) ) ) ↔ ( ( 𝑐 /su ( 2s ↑s 𝑤 ) ) ∈ ℤs ∨ ∃ 𝑝 ∈ ℤs ∃ 𝑞 ∈ ℕs ( 𝑐 /su ( 2s ↑s 𝑤 ) ) = ( ( ( 2s ·s 𝑝 ) +s 1s ) /su ( 2s ↑s 𝑞 ) ) ) ) ) |
| 105 |
104
|
adantlr |
⊢ ( ( ( 𝑤 ∈ ℕ0s ∧ ∀ 𝑎 ∈ ℤs ( ( 𝑎 /su ( 2s ↑s 𝑤 ) ) ∈ ℤs ∨ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑎 /su ( 2s ↑s 𝑤 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ) ∧ 𝑐 ∈ ℤs ) → ( ( ( ( 2s ·s 𝑐 ) /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) ∈ ℤs ∨ ∃ 𝑝 ∈ ℤs ∃ 𝑞 ∈ ℕs ( ( 2s ·s 𝑐 ) /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( ( 2s ·s 𝑝 ) +s 1s ) /su ( 2s ↑s 𝑞 ) ) ) ↔ ( ( 𝑐 /su ( 2s ↑s 𝑤 ) ) ∈ ℤs ∨ ∃ 𝑝 ∈ ℤs ∃ 𝑞 ∈ ℕs ( 𝑐 /su ( 2s ↑s 𝑤 ) ) = ( ( ( 2s ·s 𝑝 ) +s 1s ) /su ( 2s ↑s 𝑞 ) ) ) ) ) |
| 106 |
71 105
|
mpbird |
⊢ ( ( ( 𝑤 ∈ ℕ0s ∧ ∀ 𝑎 ∈ ℤs ( ( 𝑎 /su ( 2s ↑s 𝑤 ) ) ∈ ℤs ∨ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑎 /su ( 2s ↑s 𝑤 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ) ∧ 𝑐 ∈ ℤs ) → ( ( ( 2s ·s 𝑐 ) /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) ∈ ℤs ∨ ∃ 𝑝 ∈ ℤs ∃ 𝑞 ∈ ℕs ( ( 2s ·s 𝑐 ) /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( ( 2s ·s 𝑝 ) +s 1s ) /su ( 2s ↑s 𝑞 ) ) ) ) |
| 107 |
|
oveq1 |
⊢ ( 𝑏 = ( 2s ·s 𝑐 ) → ( 𝑏 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( 2s ·s 𝑐 ) /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) ) |
| 108 |
107
|
eleq1d |
⊢ ( 𝑏 = ( 2s ·s 𝑐 ) → ( ( 𝑏 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) ∈ ℤs ↔ ( ( 2s ·s 𝑐 ) /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) ∈ ℤs ) ) |
| 109 |
107
|
eqeq1d |
⊢ ( 𝑏 = ( 2s ·s 𝑐 ) → ( ( 𝑏 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( ( 2s ·s 𝑝 ) +s 1s ) /su ( 2s ↑s 𝑞 ) ) ↔ ( ( 2s ·s 𝑐 ) /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( ( 2s ·s 𝑝 ) +s 1s ) /su ( 2s ↑s 𝑞 ) ) ) ) |
| 110 |
109
|
2rexbidv |
⊢ ( 𝑏 = ( 2s ·s 𝑐 ) → ( ∃ 𝑝 ∈ ℤs ∃ 𝑞 ∈ ℕs ( 𝑏 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( ( 2s ·s 𝑝 ) +s 1s ) /su ( 2s ↑s 𝑞 ) ) ↔ ∃ 𝑝 ∈ ℤs ∃ 𝑞 ∈ ℕs ( ( 2s ·s 𝑐 ) /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( ( 2s ·s 𝑝 ) +s 1s ) /su ( 2s ↑s 𝑞 ) ) ) ) |
| 111 |
108 110
|
orbi12d |
⊢ ( 𝑏 = ( 2s ·s 𝑐 ) → ( ( ( 𝑏 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) ∈ ℤs ∨ ∃ 𝑝 ∈ ℤs ∃ 𝑞 ∈ ℕs ( 𝑏 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( ( 2s ·s 𝑝 ) +s 1s ) /su ( 2s ↑s 𝑞 ) ) ) ↔ ( ( ( 2s ·s 𝑐 ) /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) ∈ ℤs ∨ ∃ 𝑝 ∈ ℤs ∃ 𝑞 ∈ ℕs ( ( 2s ·s 𝑐 ) /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( ( 2s ·s 𝑝 ) +s 1s ) /su ( 2s ↑s 𝑞 ) ) ) ) ) |
| 112 |
106 111
|
syl5ibrcom |
⊢ ( ( ( 𝑤 ∈ ℕ0s ∧ ∀ 𝑎 ∈ ℤs ( ( 𝑎 /su ( 2s ↑s 𝑤 ) ) ∈ ℤs ∨ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑎 /su ( 2s ↑s 𝑤 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ) ∧ 𝑐 ∈ ℤs ) → ( 𝑏 = ( 2s ·s 𝑐 ) → ( ( 𝑏 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) ∈ ℤs ∨ ∃ 𝑝 ∈ ℤs ∃ 𝑞 ∈ ℕs ( 𝑏 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( ( 2s ·s 𝑝 ) +s 1s ) /su ( 2s ↑s 𝑞 ) ) ) ) ) |
| 113 |
112
|
rexlimdva |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ ∀ 𝑎 ∈ ℤs ( ( 𝑎 /su ( 2s ↑s 𝑤 ) ) ∈ ℤs ∨ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑎 /su ( 2s ↑s 𝑤 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ) → ( ∃ 𝑐 ∈ ℤs 𝑏 = ( 2s ·s 𝑐 ) → ( ( 𝑏 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) ∈ ℤs ∨ ∃ 𝑝 ∈ ℤs ∃ 𝑞 ∈ ℕs ( 𝑏 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( ( 2s ·s 𝑝 ) +s 1s ) /su ( 2s ↑s 𝑞 ) ) ) ) ) |
| 114 |
|
oveq2 |
⊢ ( 𝑝 = 𝑐 → ( 2s ·s 𝑝 ) = ( 2s ·s 𝑐 ) ) |
| 115 |
114
|
oveq1d |
⊢ ( 𝑝 = 𝑐 → ( ( 2s ·s 𝑝 ) +s 1s ) = ( ( 2s ·s 𝑐 ) +s 1s ) ) |
| 116 |
115
|
oveq1d |
⊢ ( 𝑝 = 𝑐 → ( ( ( 2s ·s 𝑝 ) +s 1s ) /su ( 2s ↑s 𝑞 ) ) = ( ( ( 2s ·s 𝑐 ) +s 1s ) /su ( 2s ↑s 𝑞 ) ) ) |
| 117 |
116
|
eqeq2d |
⊢ ( 𝑝 = 𝑐 → ( ( ( ( 2s ·s 𝑐 ) +s 1s ) /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( ( 2s ·s 𝑝 ) +s 1s ) /su ( 2s ↑s 𝑞 ) ) ↔ ( ( ( 2s ·s 𝑐 ) +s 1s ) /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( ( 2s ·s 𝑐 ) +s 1s ) /su ( 2s ↑s 𝑞 ) ) ) ) |
| 118 |
|
oveq2 |
⊢ ( 𝑞 = ( 𝑤 +s 1s ) → ( 2s ↑s 𝑞 ) = ( 2s ↑s ( 𝑤 +s 1s ) ) ) |
| 119 |
118
|
oveq2d |
⊢ ( 𝑞 = ( 𝑤 +s 1s ) → ( ( ( 2s ·s 𝑐 ) +s 1s ) /su ( 2s ↑s 𝑞 ) ) = ( ( ( 2s ·s 𝑐 ) +s 1s ) /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) ) |
| 120 |
119
|
eqeq2d |
⊢ ( 𝑞 = ( 𝑤 +s 1s ) → ( ( ( ( 2s ·s 𝑐 ) +s 1s ) /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( ( 2s ·s 𝑐 ) +s 1s ) /su ( 2s ↑s 𝑞 ) ) ↔ ( ( ( 2s ·s 𝑐 ) +s 1s ) /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( ( 2s ·s 𝑐 ) +s 1s ) /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) ) ) |
| 121 |
|
simpr |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑐 ∈ ℤs ) → 𝑐 ∈ ℤs ) |
| 122 |
|
n0p1nns |
⊢ ( 𝑤 ∈ ℕ0s → ( 𝑤 +s 1s ) ∈ ℕs ) |
| 123 |
122
|
adantr |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑐 ∈ ℤs ) → ( 𝑤 +s 1s ) ∈ ℕs ) |
| 124 |
|
eqidd |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑐 ∈ ℤs ) → ( ( ( 2s ·s 𝑐 ) +s 1s ) /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( ( 2s ·s 𝑐 ) +s 1s ) /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) ) |
| 125 |
117 120 121 123 124
|
2rspcedvdw |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑐 ∈ ℤs ) → ∃ 𝑝 ∈ ℤs ∃ 𝑞 ∈ ℕs ( ( ( 2s ·s 𝑐 ) +s 1s ) /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( ( 2s ·s 𝑝 ) +s 1s ) /su ( 2s ↑s 𝑞 ) ) ) |
| 126 |
125
|
olcd |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑐 ∈ ℤs ) → ( ( ( ( 2s ·s 𝑐 ) +s 1s ) /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) ∈ ℤs ∨ ∃ 𝑝 ∈ ℤs ∃ 𝑞 ∈ ℕs ( ( ( 2s ·s 𝑐 ) +s 1s ) /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( ( 2s ·s 𝑝 ) +s 1s ) /su ( 2s ↑s 𝑞 ) ) ) ) |
| 127 |
126
|
adantlr |
⊢ ( ( ( 𝑤 ∈ ℕ0s ∧ ∀ 𝑎 ∈ ℤs ( ( 𝑎 /su ( 2s ↑s 𝑤 ) ) ∈ ℤs ∨ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑎 /su ( 2s ↑s 𝑤 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ) ∧ 𝑐 ∈ ℤs ) → ( ( ( ( 2s ·s 𝑐 ) +s 1s ) /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) ∈ ℤs ∨ ∃ 𝑝 ∈ ℤs ∃ 𝑞 ∈ ℕs ( ( ( 2s ·s 𝑐 ) +s 1s ) /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( ( 2s ·s 𝑝 ) +s 1s ) /su ( 2s ↑s 𝑞 ) ) ) ) |
| 128 |
|
oveq1 |
⊢ ( 𝑏 = ( ( 2s ·s 𝑐 ) +s 1s ) → ( 𝑏 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( ( 2s ·s 𝑐 ) +s 1s ) /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) ) |
| 129 |
128
|
eleq1d |
⊢ ( 𝑏 = ( ( 2s ·s 𝑐 ) +s 1s ) → ( ( 𝑏 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) ∈ ℤs ↔ ( ( ( 2s ·s 𝑐 ) +s 1s ) /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) ∈ ℤs ) ) |
| 130 |
128
|
eqeq1d |
⊢ ( 𝑏 = ( ( 2s ·s 𝑐 ) +s 1s ) → ( ( 𝑏 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( ( 2s ·s 𝑝 ) +s 1s ) /su ( 2s ↑s 𝑞 ) ) ↔ ( ( ( 2s ·s 𝑐 ) +s 1s ) /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( ( 2s ·s 𝑝 ) +s 1s ) /su ( 2s ↑s 𝑞 ) ) ) ) |
| 131 |
130
|
2rexbidv |
⊢ ( 𝑏 = ( ( 2s ·s 𝑐 ) +s 1s ) → ( ∃ 𝑝 ∈ ℤs ∃ 𝑞 ∈ ℕs ( 𝑏 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( ( 2s ·s 𝑝 ) +s 1s ) /su ( 2s ↑s 𝑞 ) ) ↔ ∃ 𝑝 ∈ ℤs ∃ 𝑞 ∈ ℕs ( ( ( 2s ·s 𝑐 ) +s 1s ) /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( ( 2s ·s 𝑝 ) +s 1s ) /su ( 2s ↑s 𝑞 ) ) ) ) |
| 132 |
129 131
|
orbi12d |
⊢ ( 𝑏 = ( ( 2s ·s 𝑐 ) +s 1s ) → ( ( ( 𝑏 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) ∈ ℤs ∨ ∃ 𝑝 ∈ ℤs ∃ 𝑞 ∈ ℕs ( 𝑏 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( ( 2s ·s 𝑝 ) +s 1s ) /su ( 2s ↑s 𝑞 ) ) ) ↔ ( ( ( ( 2s ·s 𝑐 ) +s 1s ) /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) ∈ ℤs ∨ ∃ 𝑝 ∈ ℤs ∃ 𝑞 ∈ ℕs ( ( ( 2s ·s 𝑐 ) +s 1s ) /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( ( 2s ·s 𝑝 ) +s 1s ) /su ( 2s ↑s 𝑞 ) ) ) ) ) |
| 133 |
127 132
|
syl5ibrcom |
⊢ ( ( ( 𝑤 ∈ ℕ0s ∧ ∀ 𝑎 ∈ ℤs ( ( 𝑎 /su ( 2s ↑s 𝑤 ) ) ∈ ℤs ∨ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑎 /su ( 2s ↑s 𝑤 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ) ∧ 𝑐 ∈ ℤs ) → ( 𝑏 = ( ( 2s ·s 𝑐 ) +s 1s ) → ( ( 𝑏 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) ∈ ℤs ∨ ∃ 𝑝 ∈ ℤs ∃ 𝑞 ∈ ℕs ( 𝑏 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( ( 2s ·s 𝑝 ) +s 1s ) /su ( 2s ↑s 𝑞 ) ) ) ) ) |
| 134 |
133
|
rexlimdva |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ ∀ 𝑎 ∈ ℤs ( ( 𝑎 /su ( 2s ↑s 𝑤 ) ) ∈ ℤs ∨ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑎 /su ( 2s ↑s 𝑤 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ) → ( ∃ 𝑐 ∈ ℤs 𝑏 = ( ( 2s ·s 𝑐 ) +s 1s ) → ( ( 𝑏 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) ∈ ℤs ∨ ∃ 𝑝 ∈ ℤs ∃ 𝑞 ∈ ℕs ( 𝑏 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( ( 2s ·s 𝑝 ) +s 1s ) /su ( 2s ↑s 𝑞 ) ) ) ) ) |
| 135 |
113 134
|
jaod |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ ∀ 𝑎 ∈ ℤs ( ( 𝑎 /su ( 2s ↑s 𝑤 ) ) ∈ ℤs ∨ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑎 /su ( 2s ↑s 𝑤 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ) → ( ( ∃ 𝑐 ∈ ℤs 𝑏 = ( 2s ·s 𝑐 ) ∨ ∃ 𝑐 ∈ ℤs 𝑏 = ( ( 2s ·s 𝑐 ) +s 1s ) ) → ( ( 𝑏 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) ∈ ℤs ∨ ∃ 𝑝 ∈ ℤs ∃ 𝑞 ∈ ℕs ( 𝑏 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( ( 2s ·s 𝑝 ) +s 1s ) /su ( 2s ↑s 𝑞 ) ) ) ) ) |
| 136 |
57 135
|
syl5 |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ ∀ 𝑎 ∈ ℤs ( ( 𝑎 /su ( 2s ↑s 𝑤 ) ) ∈ ℤs ∨ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑎 /su ( 2s ↑s 𝑤 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ) → ( 𝑏 ∈ ℤs → ( ( 𝑏 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) ∈ ℤs ∨ ∃ 𝑝 ∈ ℤs ∃ 𝑞 ∈ ℕs ( 𝑏 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( ( 2s ·s 𝑝 ) +s 1s ) /su ( 2s ↑s 𝑞 ) ) ) ) ) |
| 137 |
136
|
ralrimiv |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ ∀ 𝑎 ∈ ℤs ( ( 𝑎 /su ( 2s ↑s 𝑤 ) ) ∈ ℤs ∨ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑎 /su ( 2s ↑s 𝑤 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ) → ∀ 𝑏 ∈ ℤs ( ( 𝑏 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) ∈ ℤs ∨ ∃ 𝑝 ∈ ℤs ∃ 𝑞 ∈ ℕs ( 𝑏 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( ( 2s ·s 𝑝 ) +s 1s ) /su ( 2s ↑s 𝑞 ) ) ) ) |
| 138 |
137
|
ex |
⊢ ( 𝑤 ∈ ℕ0s → ( ∀ 𝑎 ∈ ℤs ( ( 𝑎 /su ( 2s ↑s 𝑤 ) ) ∈ ℤs ∨ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑎 /su ( 2s ↑s 𝑤 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) → ∀ 𝑏 ∈ ℤs ( ( 𝑏 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) ∈ ℤs ∨ ∃ 𝑝 ∈ ℤs ∃ 𝑞 ∈ ℕs ( 𝑏 /su ( 2s ↑s ( 𝑤 +s 1s ) ) ) = ( ( ( 2s ·s 𝑝 ) +s 1s ) /su ( 2s ↑s 𝑞 ) ) ) ) ) |
| 139 |
12 19 42 49 56 138
|
n0sind |
⊢ ( 𝑏 ∈ ℕ0s → ∀ 𝑎 ∈ ℤs ( ( 𝑎 /su ( 2s ↑s 𝑏 ) ) ∈ ℤs ∨ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑎 /su ( 2s ↑s 𝑏 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ) |
| 140 |
|
rsp |
⊢ ( ∀ 𝑎 ∈ ℤs ( ( 𝑎 /su ( 2s ↑s 𝑏 ) ) ∈ ℤs ∨ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑎 /su ( 2s ↑s 𝑏 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) → ( 𝑎 ∈ ℤs → ( ( 𝑎 /su ( 2s ↑s 𝑏 ) ) ∈ ℤs ∨ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑎 /su ( 2s ↑s 𝑏 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ) ) |
| 141 |
139 140
|
syl |
⊢ ( 𝑏 ∈ ℕ0s → ( 𝑎 ∈ ℤs → ( ( 𝑎 /su ( 2s ↑s 𝑏 ) ) ∈ ℤs ∨ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑎 /su ( 2s ↑s 𝑏 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ) ) |
| 142 |
141
|
impcom |
⊢ ( ( 𝑎 ∈ ℤs ∧ 𝑏 ∈ ℕ0s ) → ( ( 𝑎 /su ( 2s ↑s 𝑏 ) ) ∈ ℤs ∨ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑎 /su ( 2s ↑s 𝑏 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ) |
| 143 |
|
eleq1 |
⊢ ( 𝐴 = ( 𝑎 /su ( 2s ↑s 𝑏 ) ) → ( 𝐴 ∈ ℤs ↔ ( 𝑎 /su ( 2s ↑s 𝑏 ) ) ∈ ℤs ) ) |
| 144 |
|
eqeq1 |
⊢ ( 𝐴 = ( 𝑎 /su ( 2s ↑s 𝑏 ) ) → ( 𝐴 = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ↔ ( 𝑎 /su ( 2s ↑s 𝑏 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ) |
| 145 |
144
|
2rexbidv |
⊢ ( 𝐴 = ( 𝑎 /su ( 2s ↑s 𝑏 ) ) → ( ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs 𝐴 = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ↔ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑎 /su ( 2s ↑s 𝑏 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ) |
| 146 |
143 145
|
orbi12d |
⊢ ( 𝐴 = ( 𝑎 /su ( 2s ↑s 𝑏 ) ) → ( ( 𝐴 ∈ ℤs ∨ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs 𝐴 = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ↔ ( ( 𝑎 /su ( 2s ↑s 𝑏 ) ) ∈ ℤs ∨ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs ( 𝑎 /su ( 2s ↑s 𝑏 ) ) = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ) ) |
| 147 |
142 146
|
syl5ibrcom |
⊢ ( ( 𝑎 ∈ ℤs ∧ 𝑏 ∈ ℕ0s ) → ( 𝐴 = ( 𝑎 /su ( 2s ↑s 𝑏 ) ) → ( 𝐴 ∈ ℤs ∨ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs 𝐴 = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ) ) |
| 148 |
147
|
rexlimivv |
⊢ ( ∃ 𝑎 ∈ ℤs ∃ 𝑏 ∈ ℕ0s 𝐴 = ( 𝑎 /su ( 2s ↑s 𝑏 ) ) → ( 𝐴 ∈ ℤs ∨ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs 𝐴 = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ) |
| 149 |
1 148
|
sylbi |
⊢ ( 𝐴 ∈ ℤs[1/2] → ( 𝐴 ∈ ℤs ∨ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕs 𝐴 = ( ( ( 2s ·s 𝑥 ) +s 1s ) /su ( 2s ↑s 𝑦 ) ) ) ) |