| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2ndcomap.2 |
|- Y = U. K |
| 2 |
|
2ndcomap.3 |
|- ( ph -> J e. 2ndc ) |
| 3 |
|
2ndcomap.5 |
|- ( ph -> F e. ( J Cn K ) ) |
| 4 |
|
2ndcomap.6 |
|- ( ph -> ran F = Y ) |
| 5 |
|
2ndcomap.7 |
|- ( ( ph /\ x e. J ) -> ( F " x ) e. K ) |
| 6 |
|
cntop2 |
|- ( F e. ( J Cn K ) -> K e. Top ) |
| 7 |
3 6
|
syl |
|- ( ph -> K e. Top ) |
| 8 |
7
|
ad2antrr |
|- ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) -> K e. Top ) |
| 9 |
|
simplll |
|- ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ x e. b ) -> ph ) |
| 10 |
|
bastg |
|- ( b e. TopBases -> b C_ ( topGen ` b ) ) |
| 11 |
10
|
ad2antlr |
|- ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) -> b C_ ( topGen ` b ) ) |
| 12 |
|
simprr |
|- ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) -> ( topGen ` b ) = J ) |
| 13 |
11 12
|
sseqtrd |
|- ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) -> b C_ J ) |
| 14 |
13
|
sselda |
|- ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ x e. b ) -> x e. J ) |
| 15 |
9 14 5
|
syl2anc |
|- ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ x e. b ) -> ( F " x ) e. K ) |
| 16 |
15
|
fmpttd |
|- ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) -> ( x e. b |-> ( F " x ) ) : b --> K ) |
| 17 |
16
|
frnd |
|- ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) -> ran ( x e. b |-> ( F " x ) ) C_ K ) |
| 18 |
|
elunii |
|- ( ( z e. k /\ k e. K ) -> z e. U. K ) |
| 19 |
18 1
|
eleqtrrdi |
|- ( ( z e. k /\ k e. K ) -> z e. Y ) |
| 20 |
19
|
ancoms |
|- ( ( k e. K /\ z e. k ) -> z e. Y ) |
| 21 |
20
|
adantl |
|- ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( k e. K /\ z e. k ) ) -> z e. Y ) |
| 22 |
4
|
ad3antrrr |
|- ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( k e. K /\ z e. k ) ) -> ran F = Y ) |
| 23 |
21 22
|
eleqtrrd |
|- ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( k e. K /\ z e. k ) ) -> z e. ran F ) |
| 24 |
|
eqid |
|- U. J = U. J |
| 25 |
24 1
|
cnf |
|- ( F e. ( J Cn K ) -> F : U. J --> Y ) |
| 26 |
3 25
|
syl |
|- ( ph -> F : U. J --> Y ) |
| 27 |
26
|
ad3antrrr |
|- ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( k e. K /\ z e. k ) ) -> F : U. J --> Y ) |
| 28 |
|
ffn |
|- ( F : U. J --> Y -> F Fn U. J ) |
| 29 |
|
fvelrnb |
|- ( F Fn U. J -> ( z e. ran F <-> E. t e. U. J ( F ` t ) = z ) ) |
| 30 |
27 28 29
|
3syl |
|- ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( k e. K /\ z e. k ) ) -> ( z e. ran F <-> E. t e. U. J ( F ` t ) = z ) ) |
| 31 |
23 30
|
mpbid |
|- ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( k e. K /\ z e. k ) ) -> E. t e. U. J ( F ` t ) = z ) |
| 32 |
3
|
ad3antrrr |
|- ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) -> F e. ( J Cn K ) ) |
| 33 |
|
simprll |
|- ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) -> k e. K ) |
| 34 |
|
cnima |
|- ( ( F e. ( J Cn K ) /\ k e. K ) -> ( `' F " k ) e. J ) |
| 35 |
32 33 34
|
syl2anc |
|- ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) -> ( `' F " k ) e. J ) |
| 36 |
12
|
adantr |
|- ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) -> ( topGen ` b ) = J ) |
| 37 |
35 36
|
eleqtrrd |
|- ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) -> ( `' F " k ) e. ( topGen ` b ) ) |
| 38 |
|
simprrl |
|- ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) -> t e. U. J ) |
| 39 |
|
simprrr |
|- ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) -> ( F ` t ) = z ) |
| 40 |
|
simprlr |
|- ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) -> z e. k ) |
| 41 |
39 40
|
eqeltrd |
|- ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) -> ( F ` t ) e. k ) |
| 42 |
27
|
ffnd |
|- ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( k e. K /\ z e. k ) ) -> F Fn U. J ) |
| 43 |
42
|
adantrr |
|- ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) -> F Fn U. J ) |
| 44 |
|
elpreima |
|- ( F Fn U. J -> ( t e. ( `' F " k ) <-> ( t e. U. J /\ ( F ` t ) e. k ) ) ) |
| 45 |
43 44
|
syl |
|- ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) -> ( t e. ( `' F " k ) <-> ( t e. U. J /\ ( F ` t ) e. k ) ) ) |
| 46 |
38 41 45
|
mpbir2and |
|- ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) -> t e. ( `' F " k ) ) |
| 47 |
|
tg2 |
|- ( ( ( `' F " k ) e. ( topGen ` b ) /\ t e. ( `' F " k ) ) -> E. m e. b ( t e. m /\ m C_ ( `' F " k ) ) ) |
| 48 |
37 46 47
|
syl2anc |
|- ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) -> E. m e. b ( t e. m /\ m C_ ( `' F " k ) ) ) |
| 49 |
|
simprl |
|- ( ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) /\ ( m e. b /\ ( t e. m /\ m C_ ( `' F " k ) ) ) ) -> m e. b ) |
| 50 |
|
eqid |
|- ( F " m ) = ( F " m ) |
| 51 |
|
imaeq2 |
|- ( x = m -> ( F " x ) = ( F " m ) ) |
| 52 |
51
|
rspceeqv |
|- ( ( m e. b /\ ( F " m ) = ( F " m ) ) -> E. x e. b ( F " m ) = ( F " x ) ) |
| 53 |
49 50 52
|
sylancl |
|- ( ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) /\ ( m e. b /\ ( t e. m /\ m C_ ( `' F " k ) ) ) ) -> E. x e. b ( F " m ) = ( F " x ) ) |
| 54 |
43
|
adantr |
|- ( ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) /\ ( m e. b /\ ( t e. m /\ m C_ ( `' F " k ) ) ) ) -> F Fn U. J ) |
| 55 |
|
fnfun |
|- ( F Fn U. J -> Fun F ) |
| 56 |
54 55
|
syl |
|- ( ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) /\ ( m e. b /\ ( t e. m /\ m C_ ( `' F " k ) ) ) ) -> Fun F ) |
| 57 |
|
simprrr |
|- ( ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) /\ ( m e. b /\ ( t e. m /\ m C_ ( `' F " k ) ) ) ) -> m C_ ( `' F " k ) ) |
| 58 |
|
funimass2 |
|- ( ( Fun F /\ m C_ ( `' F " k ) ) -> ( F " m ) C_ k ) |
| 59 |
56 57 58
|
syl2anc |
|- ( ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) /\ ( m e. b /\ ( t e. m /\ m C_ ( `' F " k ) ) ) ) -> ( F " m ) C_ k ) |
| 60 |
|
vex |
|- k e. _V |
| 61 |
|
ssexg |
|- ( ( ( F " m ) C_ k /\ k e. _V ) -> ( F " m ) e. _V ) |
| 62 |
59 60 61
|
sylancl |
|- ( ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) /\ ( m e. b /\ ( t e. m /\ m C_ ( `' F " k ) ) ) ) -> ( F " m ) e. _V ) |
| 63 |
|
eqid |
|- ( x e. b |-> ( F " x ) ) = ( x e. b |-> ( F " x ) ) |
| 64 |
63
|
elrnmpt |
|- ( ( F " m ) e. _V -> ( ( F " m ) e. ran ( x e. b |-> ( F " x ) ) <-> E. x e. b ( F " m ) = ( F " x ) ) ) |
| 65 |
62 64
|
syl |
|- ( ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) /\ ( m e. b /\ ( t e. m /\ m C_ ( `' F " k ) ) ) ) -> ( ( F " m ) e. ran ( x e. b |-> ( F " x ) ) <-> E. x e. b ( F " m ) = ( F " x ) ) ) |
| 66 |
53 65
|
mpbird |
|- ( ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) /\ ( m e. b /\ ( t e. m /\ m C_ ( `' F " k ) ) ) ) -> ( F " m ) e. ran ( x e. b |-> ( F " x ) ) ) |
| 67 |
39
|
adantr |
|- ( ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) /\ ( m e. b /\ ( t e. m /\ m C_ ( `' F " k ) ) ) ) -> ( F ` t ) = z ) |
| 68 |
|
simprrl |
|- ( ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) /\ ( m e. b /\ ( t e. m /\ m C_ ( `' F " k ) ) ) ) -> t e. m ) |
| 69 |
|
cnvimass |
|- ( `' F " k ) C_ dom F |
| 70 |
57 69
|
sstrdi |
|- ( ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) /\ ( m e. b /\ ( t e. m /\ m C_ ( `' F " k ) ) ) ) -> m C_ dom F ) |
| 71 |
|
funfvima2 |
|- ( ( Fun F /\ m C_ dom F ) -> ( t e. m -> ( F ` t ) e. ( F " m ) ) ) |
| 72 |
56 70 71
|
syl2anc |
|- ( ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) /\ ( m e. b /\ ( t e. m /\ m C_ ( `' F " k ) ) ) ) -> ( t e. m -> ( F ` t ) e. ( F " m ) ) ) |
| 73 |
68 72
|
mpd |
|- ( ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) /\ ( m e. b /\ ( t e. m /\ m C_ ( `' F " k ) ) ) ) -> ( F ` t ) e. ( F " m ) ) |
| 74 |
67 73
|
eqeltrrd |
|- ( ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) /\ ( m e. b /\ ( t e. m /\ m C_ ( `' F " k ) ) ) ) -> z e. ( F " m ) ) |
| 75 |
|
eleq2 |
|- ( w = ( F " m ) -> ( z e. w <-> z e. ( F " m ) ) ) |
| 76 |
|
sseq1 |
|- ( w = ( F " m ) -> ( w C_ k <-> ( F " m ) C_ k ) ) |
| 77 |
75 76
|
anbi12d |
|- ( w = ( F " m ) -> ( ( z e. w /\ w C_ k ) <-> ( z e. ( F " m ) /\ ( F " m ) C_ k ) ) ) |
| 78 |
77
|
rspcev |
|- ( ( ( F " m ) e. ran ( x e. b |-> ( F " x ) ) /\ ( z e. ( F " m ) /\ ( F " m ) C_ k ) ) -> E. w e. ran ( x e. b |-> ( F " x ) ) ( z e. w /\ w C_ k ) ) |
| 79 |
66 74 59 78
|
syl12anc |
|- ( ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) /\ ( m e. b /\ ( t e. m /\ m C_ ( `' F " k ) ) ) ) -> E. w e. ran ( x e. b |-> ( F " x ) ) ( z e. w /\ w C_ k ) ) |
| 80 |
48 79
|
rexlimddv |
|- ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) -> E. w e. ran ( x e. b |-> ( F " x ) ) ( z e. w /\ w C_ k ) ) |
| 81 |
80
|
anassrs |
|- ( ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( k e. K /\ z e. k ) ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) -> E. w e. ran ( x e. b |-> ( F " x ) ) ( z e. w /\ w C_ k ) ) |
| 82 |
31 81
|
rexlimddv |
|- ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( k e. K /\ z e. k ) ) -> E. w e. ran ( x e. b |-> ( F " x ) ) ( z e. w /\ w C_ k ) ) |
| 83 |
82
|
ralrimivva |
|- ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) -> A. k e. K A. z e. k E. w e. ran ( x e. b |-> ( F " x ) ) ( z e. w /\ w C_ k ) ) |
| 84 |
|
basgen2 |
|- ( ( K e. Top /\ ran ( x e. b |-> ( F " x ) ) C_ K /\ A. k e. K A. z e. k E. w e. ran ( x e. b |-> ( F " x ) ) ( z e. w /\ w C_ k ) ) -> ( topGen ` ran ( x e. b |-> ( F " x ) ) ) = K ) |
| 85 |
8 17 83 84
|
syl3anc |
|- ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) -> ( topGen ` ran ( x e. b |-> ( F " x ) ) ) = K ) |
| 86 |
85 8
|
eqeltrd |
|- ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) -> ( topGen ` ran ( x e. b |-> ( F " x ) ) ) e. Top ) |
| 87 |
|
tgclb |
|- ( ran ( x e. b |-> ( F " x ) ) e. TopBases <-> ( topGen ` ran ( x e. b |-> ( F " x ) ) ) e. Top ) |
| 88 |
86 87
|
sylibr |
|- ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) -> ran ( x e. b |-> ( F " x ) ) e. TopBases ) |
| 89 |
|
omelon |
|- _om e. On |
| 90 |
|
simprl |
|- ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) -> b ~<_ _om ) |
| 91 |
|
ondomen |
|- ( ( _om e. On /\ b ~<_ _om ) -> b e. dom card ) |
| 92 |
89 90 91
|
sylancr |
|- ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) -> b e. dom card ) |
| 93 |
16
|
ffnd |
|- ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) -> ( x e. b |-> ( F " x ) ) Fn b ) |
| 94 |
|
dffn4 |
|- ( ( x e. b |-> ( F " x ) ) Fn b <-> ( x e. b |-> ( F " x ) ) : b -onto-> ran ( x e. b |-> ( F " x ) ) ) |
| 95 |
93 94
|
sylib |
|- ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) -> ( x e. b |-> ( F " x ) ) : b -onto-> ran ( x e. b |-> ( F " x ) ) ) |
| 96 |
|
fodomnum |
|- ( b e. dom card -> ( ( x e. b |-> ( F " x ) ) : b -onto-> ran ( x e. b |-> ( F " x ) ) -> ran ( x e. b |-> ( F " x ) ) ~<_ b ) ) |
| 97 |
92 95 96
|
sylc |
|- ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) -> ran ( x e. b |-> ( F " x ) ) ~<_ b ) |
| 98 |
|
domtr |
|- ( ( ran ( x e. b |-> ( F " x ) ) ~<_ b /\ b ~<_ _om ) -> ran ( x e. b |-> ( F " x ) ) ~<_ _om ) |
| 99 |
97 90 98
|
syl2anc |
|- ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) -> ran ( x e. b |-> ( F " x ) ) ~<_ _om ) |
| 100 |
|
2ndci |
|- ( ( ran ( x e. b |-> ( F " x ) ) e. TopBases /\ ran ( x e. b |-> ( F " x ) ) ~<_ _om ) -> ( topGen ` ran ( x e. b |-> ( F " x ) ) ) e. 2ndc ) |
| 101 |
88 99 100
|
syl2anc |
|- ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) -> ( topGen ` ran ( x e. b |-> ( F " x ) ) ) e. 2ndc ) |
| 102 |
85 101
|
eqeltrrd |
|- ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) -> K e. 2ndc ) |
| 103 |
|
is2ndc |
|- ( J e. 2ndc <-> E. b e. TopBases ( b ~<_ _om /\ ( topGen ` b ) = J ) ) |
| 104 |
2 103
|
sylib |
|- ( ph -> E. b e. TopBases ( b ~<_ _om /\ ( topGen ` b ) = J ) ) |
| 105 |
102 104
|
r19.29a |
|- ( ph -> K e. 2ndc ) |