| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bpolydiflem.1 |  |-  ( ph -> N e. NN ) | 
						
							| 2 |  | bpolydiflem.2 |  |-  ( ph -> X e. CC ) | 
						
							| 3 |  | bpolydiflem.3 |  |-  ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( ( k BernPoly ( X + 1 ) ) - ( k BernPoly X ) ) = ( k x. ( X ^ ( k - 1 ) ) ) ) | 
						
							| 4 | 1 | nnnn0d |  |-  ( ph -> N e. NN0 ) | 
						
							| 5 |  | peano2cn |  |-  ( X e. CC -> ( X + 1 ) e. CC ) | 
						
							| 6 | 2 5 | syl |  |-  ( ph -> ( X + 1 ) e. CC ) | 
						
							| 7 |  | bpolyval |  |-  ( ( N e. NN0 /\ ( X + 1 ) e. CC ) -> ( N BernPoly ( X + 1 ) ) = ( ( ( X + 1 ) ^ N ) - sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) ) ) | 
						
							| 8 | 4 6 7 | syl2anc |  |-  ( ph -> ( N BernPoly ( X + 1 ) ) = ( ( ( X + 1 ) ^ N ) - sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) ) ) | 
						
							| 9 |  | bpolyval |  |-  ( ( N e. NN0 /\ X e. CC ) -> ( N BernPoly X ) = ( ( X ^ N ) - sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) ) | 
						
							| 10 | 4 2 9 | syl2anc |  |-  ( ph -> ( N BernPoly X ) = ( ( X ^ N ) - sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) ) | 
						
							| 11 | 8 10 | oveq12d |  |-  ( ph -> ( ( N BernPoly ( X + 1 ) ) - ( N BernPoly X ) ) = ( ( ( ( X + 1 ) ^ N ) - sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) ) - ( ( X ^ N ) - sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) ) ) | 
						
							| 12 | 6 4 | expcld |  |-  ( ph -> ( ( X + 1 ) ^ N ) e. CC ) | 
						
							| 13 |  | fzfid |  |-  ( ph -> ( 0 ... ( N - 1 ) ) e. Fin ) | 
						
							| 14 |  | elfzelz |  |-  ( k e. ( 0 ... ( N - 1 ) ) -> k e. ZZ ) | 
						
							| 15 |  | bccl |  |-  ( ( N e. NN0 /\ k e. ZZ ) -> ( N _C k ) e. NN0 ) | 
						
							| 16 | 4 14 15 | syl2an |  |-  ( ( ph /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( N _C k ) e. NN0 ) | 
						
							| 17 | 16 | nn0cnd |  |-  ( ( ph /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( N _C k ) e. CC ) | 
						
							| 18 |  | elfznn0 |  |-  ( k e. ( 0 ... ( N - 1 ) ) -> k e. NN0 ) | 
						
							| 19 |  | bpolycl |  |-  ( ( k e. NN0 /\ ( X + 1 ) e. CC ) -> ( k BernPoly ( X + 1 ) ) e. CC ) | 
						
							| 20 | 18 6 19 | syl2anr |  |-  ( ( ph /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( k BernPoly ( X + 1 ) ) e. CC ) | 
						
							| 21 |  | fzssp1 |  |-  ( 0 ... ( N - 1 ) ) C_ ( 0 ... ( ( N - 1 ) + 1 ) ) | 
						
							| 22 | 1 | nncnd |  |-  ( ph -> N e. CC ) | 
						
							| 23 |  | ax-1cn |  |-  1 e. CC | 
						
							| 24 |  | npcan |  |-  ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 25 | 22 23 24 | sylancl |  |-  ( ph -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 26 | 25 | oveq2d |  |-  ( ph -> ( 0 ... ( ( N - 1 ) + 1 ) ) = ( 0 ... N ) ) | 
						
							| 27 | 21 26 | sseqtrid |  |-  ( ph -> ( 0 ... ( N - 1 ) ) C_ ( 0 ... N ) ) | 
						
							| 28 | 27 | sselda |  |-  ( ( ph /\ k e. ( 0 ... ( N - 1 ) ) ) -> k e. ( 0 ... N ) ) | 
						
							| 29 |  | fznn0sub |  |-  ( k e. ( 0 ... N ) -> ( N - k ) e. NN0 ) | 
						
							| 30 | 28 29 | syl |  |-  ( ( ph /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( N - k ) e. NN0 ) | 
						
							| 31 |  | nn0p1nn |  |-  ( ( N - k ) e. NN0 -> ( ( N - k ) + 1 ) e. NN ) | 
						
							| 32 | 30 31 | syl |  |-  ( ( ph /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( ( N - k ) + 1 ) e. NN ) | 
						
							| 33 | 32 | nncnd |  |-  ( ( ph /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( ( N - k ) + 1 ) e. CC ) | 
						
							| 34 | 32 | nnne0d |  |-  ( ( ph /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( ( N - k ) + 1 ) =/= 0 ) | 
						
							| 35 | 20 33 34 | divcld |  |-  ( ( ph /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) e. CC ) | 
						
							| 36 | 17 35 | mulcld |  |-  ( ( ph /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) e. CC ) | 
						
							| 37 | 13 36 | fsumcl |  |-  ( ph -> sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) e. CC ) | 
						
							| 38 | 2 4 | expcld |  |-  ( ph -> ( X ^ N ) e. CC ) | 
						
							| 39 |  | bpolycl |  |-  ( ( k e. NN0 /\ X e. CC ) -> ( k BernPoly X ) e. CC ) | 
						
							| 40 | 18 2 39 | syl2anr |  |-  ( ( ph /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( k BernPoly X ) e. CC ) | 
						
							| 41 | 40 33 34 | divcld |  |-  ( ( ph /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) e. CC ) | 
						
							| 42 | 17 41 | mulcld |  |-  ( ( ph /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) e. CC ) | 
						
							| 43 | 13 42 | fsumcl |  |-  ( ph -> sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) e. CC ) | 
						
							| 44 | 12 37 38 43 | sub4d |  |-  ( ph -> ( ( ( ( X + 1 ) ^ N ) - sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) ) - ( ( X ^ N ) - sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) ) = ( ( ( ( X + 1 ) ^ N ) - ( X ^ N ) ) - ( sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) - sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) ) ) | 
						
							| 45 | 27 | sselda |  |-  ( ( ph /\ m e. ( 0 ... ( N - 1 ) ) ) -> m e. ( 0 ... N ) ) | 
						
							| 46 |  | bccl2 |  |-  ( m e. ( 0 ... N ) -> ( N _C m ) e. NN ) | 
						
							| 47 | 46 | adantl |  |-  ( ( ph /\ m e. ( 0 ... N ) ) -> ( N _C m ) e. NN ) | 
						
							| 48 | 47 | nncnd |  |-  ( ( ph /\ m e. ( 0 ... N ) ) -> ( N _C m ) e. CC ) | 
						
							| 49 |  | elfznn0 |  |-  ( m e. ( 0 ... N ) -> m e. NN0 ) | 
						
							| 50 |  | expcl |  |-  ( ( X e. CC /\ m e. NN0 ) -> ( X ^ m ) e. CC ) | 
						
							| 51 | 2 49 50 | syl2an |  |-  ( ( ph /\ m e. ( 0 ... N ) ) -> ( X ^ m ) e. CC ) | 
						
							| 52 | 48 51 | mulcld |  |-  ( ( ph /\ m e. ( 0 ... N ) ) -> ( ( N _C m ) x. ( X ^ m ) ) e. CC ) | 
						
							| 53 | 45 52 | syldan |  |-  ( ( ph /\ m e. ( 0 ... ( N - 1 ) ) ) -> ( ( N _C m ) x. ( X ^ m ) ) e. CC ) | 
						
							| 54 | 13 53 | fsumcl |  |-  ( ph -> sum_ m e. ( 0 ... ( N - 1 ) ) ( ( N _C m ) x. ( X ^ m ) ) e. CC ) | 
						
							| 55 |  | addcom |  |-  ( ( X e. CC /\ 1 e. CC ) -> ( X + 1 ) = ( 1 + X ) ) | 
						
							| 56 | 2 23 55 | sylancl |  |-  ( ph -> ( X + 1 ) = ( 1 + X ) ) | 
						
							| 57 | 56 | oveq1d |  |-  ( ph -> ( ( X + 1 ) ^ N ) = ( ( 1 + X ) ^ N ) ) | 
						
							| 58 |  | binom1p |  |-  ( ( X e. CC /\ N e. NN0 ) -> ( ( 1 + X ) ^ N ) = sum_ m e. ( 0 ... N ) ( ( N _C m ) x. ( X ^ m ) ) ) | 
						
							| 59 | 2 4 58 | syl2anc |  |-  ( ph -> ( ( 1 + X ) ^ N ) = sum_ m e. ( 0 ... N ) ( ( N _C m ) x. ( X ^ m ) ) ) | 
						
							| 60 | 57 59 | eqtrd |  |-  ( ph -> ( ( X + 1 ) ^ N ) = sum_ m e. ( 0 ... N ) ( ( N _C m ) x. ( X ^ m ) ) ) | 
						
							| 61 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 62 | 4 61 | eleqtrdi |  |-  ( ph -> N e. ( ZZ>= ` 0 ) ) | 
						
							| 63 |  | oveq2 |  |-  ( m = N -> ( N _C m ) = ( N _C N ) ) | 
						
							| 64 |  | oveq2 |  |-  ( m = N -> ( X ^ m ) = ( X ^ N ) ) | 
						
							| 65 | 63 64 | oveq12d |  |-  ( m = N -> ( ( N _C m ) x. ( X ^ m ) ) = ( ( N _C N ) x. ( X ^ N ) ) ) | 
						
							| 66 | 62 52 65 | fsumm1 |  |-  ( ph -> sum_ m e. ( 0 ... N ) ( ( N _C m ) x. ( X ^ m ) ) = ( sum_ m e. ( 0 ... ( N - 1 ) ) ( ( N _C m ) x. ( X ^ m ) ) + ( ( N _C N ) x. ( X ^ N ) ) ) ) | 
						
							| 67 |  | bcnn |  |-  ( N e. NN0 -> ( N _C N ) = 1 ) | 
						
							| 68 | 4 67 | syl |  |-  ( ph -> ( N _C N ) = 1 ) | 
						
							| 69 | 68 | oveq1d |  |-  ( ph -> ( ( N _C N ) x. ( X ^ N ) ) = ( 1 x. ( X ^ N ) ) ) | 
						
							| 70 | 38 | mullidd |  |-  ( ph -> ( 1 x. ( X ^ N ) ) = ( X ^ N ) ) | 
						
							| 71 | 69 70 | eqtrd |  |-  ( ph -> ( ( N _C N ) x. ( X ^ N ) ) = ( X ^ N ) ) | 
						
							| 72 | 71 | oveq2d |  |-  ( ph -> ( sum_ m e. ( 0 ... ( N - 1 ) ) ( ( N _C m ) x. ( X ^ m ) ) + ( ( N _C N ) x. ( X ^ N ) ) ) = ( sum_ m e. ( 0 ... ( N - 1 ) ) ( ( N _C m ) x. ( X ^ m ) ) + ( X ^ N ) ) ) | 
						
							| 73 | 60 66 72 | 3eqtrd |  |-  ( ph -> ( ( X + 1 ) ^ N ) = ( sum_ m e. ( 0 ... ( N - 1 ) ) ( ( N _C m ) x. ( X ^ m ) ) + ( X ^ N ) ) ) | 
						
							| 74 | 54 38 73 | mvrraddd |  |-  ( ph -> ( ( ( X + 1 ) ^ N ) - ( X ^ N ) ) = sum_ m e. ( 0 ... ( N - 1 ) ) ( ( N _C m ) x. ( X ^ m ) ) ) | 
						
							| 75 |  | nnm1nn0 |  |-  ( N e. NN -> ( N - 1 ) e. NN0 ) | 
						
							| 76 | 1 75 | syl |  |-  ( ph -> ( N - 1 ) e. NN0 ) | 
						
							| 77 | 76 61 | eleqtrdi |  |-  ( ph -> ( N - 1 ) e. ( ZZ>= ` 0 ) ) | 
						
							| 78 |  | oveq2 |  |-  ( m = ( N - 1 ) -> ( N _C m ) = ( N _C ( N - 1 ) ) ) | 
						
							| 79 |  | oveq2 |  |-  ( m = ( N - 1 ) -> ( X ^ m ) = ( X ^ ( N - 1 ) ) ) | 
						
							| 80 | 78 79 | oveq12d |  |-  ( m = ( N - 1 ) -> ( ( N _C m ) x. ( X ^ m ) ) = ( ( N _C ( N - 1 ) ) x. ( X ^ ( N - 1 ) ) ) ) | 
						
							| 81 | 77 53 80 | fsumm1 |  |-  ( ph -> sum_ m e. ( 0 ... ( N - 1 ) ) ( ( N _C m ) x. ( X ^ m ) ) = ( sum_ m e. ( 0 ... ( ( N - 1 ) - 1 ) ) ( ( N _C m ) x. ( X ^ m ) ) + ( ( N _C ( N - 1 ) ) x. ( X ^ ( N - 1 ) ) ) ) ) | 
						
							| 82 |  | 1cnd |  |-  ( ph -> 1 e. CC ) | 
						
							| 83 | 22 82 82 | subsub4d |  |-  ( ph -> ( ( N - 1 ) - 1 ) = ( N - ( 1 + 1 ) ) ) | 
						
							| 84 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 85 | 84 | oveq2i |  |-  ( N - 2 ) = ( N - ( 1 + 1 ) ) | 
						
							| 86 | 83 85 | eqtr4di |  |-  ( ph -> ( ( N - 1 ) - 1 ) = ( N - 2 ) ) | 
						
							| 87 | 86 | oveq2d |  |-  ( ph -> ( 0 ... ( ( N - 1 ) - 1 ) ) = ( 0 ... ( N - 2 ) ) ) | 
						
							| 88 | 87 | sumeq1d |  |-  ( ph -> sum_ m e. ( 0 ... ( ( N - 1 ) - 1 ) ) ( ( N _C m ) x. ( X ^ m ) ) = sum_ m e. ( 0 ... ( N - 2 ) ) ( ( N _C m ) x. ( X ^ m ) ) ) | 
						
							| 89 |  | bcnm1 |  |-  ( N e. NN0 -> ( N _C ( N - 1 ) ) = N ) | 
						
							| 90 | 4 89 | syl |  |-  ( ph -> ( N _C ( N - 1 ) ) = N ) | 
						
							| 91 | 90 | oveq1d |  |-  ( ph -> ( ( N _C ( N - 1 ) ) x. ( X ^ ( N - 1 ) ) ) = ( N x. ( X ^ ( N - 1 ) ) ) ) | 
						
							| 92 | 88 91 | oveq12d |  |-  ( ph -> ( sum_ m e. ( 0 ... ( ( N - 1 ) - 1 ) ) ( ( N _C m ) x. ( X ^ m ) ) + ( ( N _C ( N - 1 ) ) x. ( X ^ ( N - 1 ) ) ) ) = ( sum_ m e. ( 0 ... ( N - 2 ) ) ( ( N _C m ) x. ( X ^ m ) ) + ( N x. ( X ^ ( N - 1 ) ) ) ) ) | 
						
							| 93 | 74 81 92 | 3eqtrd |  |-  ( ph -> ( ( ( X + 1 ) ^ N ) - ( X ^ N ) ) = ( sum_ m e. ( 0 ... ( N - 2 ) ) ( ( N _C m ) x. ( X ^ m ) ) + ( N x. ( X ^ ( N - 1 ) ) ) ) ) | 
						
							| 94 |  | oveq2 |  |-  ( k = 0 -> ( N _C k ) = ( N _C 0 ) ) | 
						
							| 95 |  | oveq1 |  |-  ( k = 0 -> ( k BernPoly ( X + 1 ) ) = ( 0 BernPoly ( X + 1 ) ) ) | 
						
							| 96 |  | oveq2 |  |-  ( k = 0 -> ( N - k ) = ( N - 0 ) ) | 
						
							| 97 | 96 | oveq1d |  |-  ( k = 0 -> ( ( N - k ) + 1 ) = ( ( N - 0 ) + 1 ) ) | 
						
							| 98 | 95 97 | oveq12d |  |-  ( k = 0 -> ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) = ( ( 0 BernPoly ( X + 1 ) ) / ( ( N - 0 ) + 1 ) ) ) | 
						
							| 99 | 94 98 | oveq12d |  |-  ( k = 0 -> ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) = ( ( N _C 0 ) x. ( ( 0 BernPoly ( X + 1 ) ) / ( ( N - 0 ) + 1 ) ) ) ) | 
						
							| 100 | 77 36 99 | fsum1p |  |-  ( ph -> sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) = ( ( ( N _C 0 ) x. ( ( 0 BernPoly ( X + 1 ) ) / ( ( N - 0 ) + 1 ) ) ) + sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) ) ) | 
						
							| 101 |  | bpoly0 |  |-  ( ( X + 1 ) e. CC -> ( 0 BernPoly ( X + 1 ) ) = 1 ) | 
						
							| 102 | 6 101 | syl |  |-  ( ph -> ( 0 BernPoly ( X + 1 ) ) = 1 ) | 
						
							| 103 | 102 | oveq1d |  |-  ( ph -> ( ( 0 BernPoly ( X + 1 ) ) / ( ( N - 0 ) + 1 ) ) = ( 1 / ( ( N - 0 ) + 1 ) ) ) | 
						
							| 104 | 103 | oveq2d |  |-  ( ph -> ( ( N _C 0 ) x. ( ( 0 BernPoly ( X + 1 ) ) / ( ( N - 0 ) + 1 ) ) ) = ( ( N _C 0 ) x. ( 1 / ( ( N - 0 ) + 1 ) ) ) ) | 
						
							| 105 | 104 | oveq1d |  |-  ( ph -> ( ( ( N _C 0 ) x. ( ( 0 BernPoly ( X + 1 ) ) / ( ( N - 0 ) + 1 ) ) ) + sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) ) = ( ( ( N _C 0 ) x. ( 1 / ( ( N - 0 ) + 1 ) ) ) + sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) ) ) | 
						
							| 106 | 100 105 | eqtrd |  |-  ( ph -> sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) = ( ( ( N _C 0 ) x. ( 1 / ( ( N - 0 ) + 1 ) ) ) + sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) ) ) | 
						
							| 107 |  | oveq1 |  |-  ( k = 0 -> ( k BernPoly X ) = ( 0 BernPoly X ) ) | 
						
							| 108 | 107 97 | oveq12d |  |-  ( k = 0 -> ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) = ( ( 0 BernPoly X ) / ( ( N - 0 ) + 1 ) ) ) | 
						
							| 109 | 94 108 | oveq12d |  |-  ( k = 0 -> ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) = ( ( N _C 0 ) x. ( ( 0 BernPoly X ) / ( ( N - 0 ) + 1 ) ) ) ) | 
						
							| 110 | 77 42 109 | fsum1p |  |-  ( ph -> sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) = ( ( ( N _C 0 ) x. ( ( 0 BernPoly X ) / ( ( N - 0 ) + 1 ) ) ) + sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) ) | 
						
							| 111 |  | bpoly0 |  |-  ( X e. CC -> ( 0 BernPoly X ) = 1 ) | 
						
							| 112 | 2 111 | syl |  |-  ( ph -> ( 0 BernPoly X ) = 1 ) | 
						
							| 113 | 112 | oveq1d |  |-  ( ph -> ( ( 0 BernPoly X ) / ( ( N - 0 ) + 1 ) ) = ( 1 / ( ( N - 0 ) + 1 ) ) ) | 
						
							| 114 | 113 | oveq2d |  |-  ( ph -> ( ( N _C 0 ) x. ( ( 0 BernPoly X ) / ( ( N - 0 ) + 1 ) ) ) = ( ( N _C 0 ) x. ( 1 / ( ( N - 0 ) + 1 ) ) ) ) | 
						
							| 115 | 114 | oveq1d |  |-  ( ph -> ( ( ( N _C 0 ) x. ( ( 0 BernPoly X ) / ( ( N - 0 ) + 1 ) ) ) + sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) = ( ( ( N _C 0 ) x. ( 1 / ( ( N - 0 ) + 1 ) ) ) + sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) ) | 
						
							| 116 | 110 115 | eqtrd |  |-  ( ph -> sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) = ( ( ( N _C 0 ) x. ( 1 / ( ( N - 0 ) + 1 ) ) ) + sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) ) | 
						
							| 117 | 106 116 | oveq12d |  |-  ( ph -> ( sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) - sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) = ( ( ( ( N _C 0 ) x. ( 1 / ( ( N - 0 ) + 1 ) ) ) + sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) ) - ( ( ( N _C 0 ) x. ( 1 / ( ( N - 0 ) + 1 ) ) ) + sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) ) ) | 
						
							| 118 |  | 0z |  |-  0 e. ZZ | 
						
							| 119 |  | bccl |  |-  ( ( N e. NN0 /\ 0 e. ZZ ) -> ( N _C 0 ) e. NN0 ) | 
						
							| 120 | 4 118 119 | sylancl |  |-  ( ph -> ( N _C 0 ) e. NN0 ) | 
						
							| 121 | 120 | nn0cnd |  |-  ( ph -> ( N _C 0 ) e. CC ) | 
						
							| 122 | 22 | subid1d |  |-  ( ph -> ( N - 0 ) = N ) | 
						
							| 123 | 122 1 | eqeltrd |  |-  ( ph -> ( N - 0 ) e. NN ) | 
						
							| 124 | 123 | peano2nnd |  |-  ( ph -> ( ( N - 0 ) + 1 ) e. NN ) | 
						
							| 125 | 124 | nnrecred |  |-  ( ph -> ( 1 / ( ( N - 0 ) + 1 ) ) e. RR ) | 
						
							| 126 | 125 | recnd |  |-  ( ph -> ( 1 / ( ( N - 0 ) + 1 ) ) e. CC ) | 
						
							| 127 | 121 126 | mulcld |  |-  ( ph -> ( ( N _C 0 ) x. ( 1 / ( ( N - 0 ) + 1 ) ) ) e. CC ) | 
						
							| 128 |  | fzfid |  |-  ( ph -> ( ( 0 + 1 ) ... ( N - 1 ) ) e. Fin ) | 
						
							| 129 |  | fzp1ss |  |-  ( 0 e. ZZ -> ( ( 0 + 1 ) ... ( N - 1 ) ) C_ ( 0 ... ( N - 1 ) ) ) | 
						
							| 130 | 118 129 | ax-mp |  |-  ( ( 0 + 1 ) ... ( N - 1 ) ) C_ ( 0 ... ( N - 1 ) ) | 
						
							| 131 | 130 | sseli |  |-  ( k e. ( ( 0 + 1 ) ... ( N - 1 ) ) -> k e. ( 0 ... ( N - 1 ) ) ) | 
						
							| 132 | 131 36 | sylan2 |  |-  ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ) -> ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) e. CC ) | 
						
							| 133 | 128 132 | fsumcl |  |-  ( ph -> sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) e. CC ) | 
						
							| 134 | 131 42 | sylan2 |  |-  ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ) -> ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) e. CC ) | 
						
							| 135 | 128 134 | fsumcl |  |-  ( ph -> sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) e. CC ) | 
						
							| 136 | 127 133 135 | pnpcand |  |-  ( ph -> ( ( ( ( N _C 0 ) x. ( 1 / ( ( N - 0 ) + 1 ) ) ) + sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) ) - ( ( ( N _C 0 ) x. ( 1 / ( ( N - 0 ) + 1 ) ) ) + sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) ) = ( sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) - sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) ) | 
						
							| 137 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 138 |  | 0zd |  |-  ( ph -> 0 e. ZZ ) | 
						
							| 139 | 1 | nnzd |  |-  ( ph -> N e. ZZ ) | 
						
							| 140 |  | 2z |  |-  2 e. ZZ | 
						
							| 141 |  | zsubcl |  |-  ( ( N e. ZZ /\ 2 e. ZZ ) -> ( N - 2 ) e. ZZ ) | 
						
							| 142 | 139 140 141 | sylancl |  |-  ( ph -> ( N - 2 ) e. ZZ ) | 
						
							| 143 |  | fzssp1 |  |-  ( 0 ... ( N - 2 ) ) C_ ( 0 ... ( ( N - 2 ) + 1 ) ) | 
						
							| 144 |  | 2cnd |  |-  ( ph -> 2 e. CC ) | 
						
							| 145 | 22 144 82 | subsubd |  |-  ( ph -> ( N - ( 2 - 1 ) ) = ( ( N - 2 ) + 1 ) ) | 
						
							| 146 |  | 2m1e1 |  |-  ( 2 - 1 ) = 1 | 
						
							| 147 | 146 | oveq2i |  |-  ( N - ( 2 - 1 ) ) = ( N - 1 ) | 
						
							| 148 | 145 147 | eqtr3di |  |-  ( ph -> ( ( N - 2 ) + 1 ) = ( N - 1 ) ) | 
						
							| 149 | 148 | oveq2d |  |-  ( ph -> ( 0 ... ( ( N - 2 ) + 1 ) ) = ( 0 ... ( N - 1 ) ) ) | 
						
							| 150 | 143 149 | sseqtrid |  |-  ( ph -> ( 0 ... ( N - 2 ) ) C_ ( 0 ... ( N - 1 ) ) ) | 
						
							| 151 | 150 | sselda |  |-  ( ( ph /\ m e. ( 0 ... ( N - 2 ) ) ) -> m e. ( 0 ... ( N - 1 ) ) ) | 
						
							| 152 | 151 53 | syldan |  |-  ( ( ph /\ m e. ( 0 ... ( N - 2 ) ) ) -> ( ( N _C m ) x. ( X ^ m ) ) e. CC ) | 
						
							| 153 |  | oveq2 |  |-  ( m = ( k - 1 ) -> ( N _C m ) = ( N _C ( k - 1 ) ) ) | 
						
							| 154 |  | oveq2 |  |-  ( m = ( k - 1 ) -> ( X ^ m ) = ( X ^ ( k - 1 ) ) ) | 
						
							| 155 | 153 154 | oveq12d |  |-  ( m = ( k - 1 ) -> ( ( N _C m ) x. ( X ^ m ) ) = ( ( N _C ( k - 1 ) ) x. ( X ^ ( k - 1 ) ) ) ) | 
						
							| 156 | 137 138 142 152 155 | fsumshft |  |-  ( ph -> sum_ m e. ( 0 ... ( N - 2 ) ) ( ( N _C m ) x. ( X ^ m ) ) = sum_ k e. ( ( 0 + 1 ) ... ( ( N - 2 ) + 1 ) ) ( ( N _C ( k - 1 ) ) x. ( X ^ ( k - 1 ) ) ) ) | 
						
							| 157 | 148 | oveq2d |  |-  ( ph -> ( ( 0 + 1 ) ... ( ( N - 2 ) + 1 ) ) = ( ( 0 + 1 ) ... ( N - 1 ) ) ) | 
						
							| 158 | 157 | sumeq1d |  |-  ( ph -> sum_ k e. ( ( 0 + 1 ) ... ( ( N - 2 ) + 1 ) ) ( ( N _C ( k - 1 ) ) x. ( X ^ ( k - 1 ) ) ) = sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( N _C ( k - 1 ) ) x. ( X ^ ( k - 1 ) ) ) ) | 
						
							| 159 | 156 158 | eqtrd |  |-  ( ph -> sum_ m e. ( 0 ... ( N - 2 ) ) ( ( N _C m ) x. ( X ^ m ) ) = sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( N _C ( k - 1 ) ) x. ( X ^ ( k - 1 ) ) ) ) | 
						
							| 160 |  | 0p1e1 |  |-  ( 0 + 1 ) = 1 | 
						
							| 161 | 160 | oveq1i |  |-  ( ( 0 + 1 ) ... ( N - 1 ) ) = ( 1 ... ( N - 1 ) ) | 
						
							| 162 | 161 | eleq2i |  |-  ( k e. ( ( 0 + 1 ) ... ( N - 1 ) ) <-> k e. ( 1 ... ( N - 1 ) ) ) | 
						
							| 163 |  | fzssp1 |  |-  ( 1 ... ( N - 1 ) ) C_ ( 1 ... ( ( N - 1 ) + 1 ) ) | 
						
							| 164 | 25 | oveq2d |  |-  ( ph -> ( 1 ... ( ( N - 1 ) + 1 ) ) = ( 1 ... N ) ) | 
						
							| 165 | 163 164 | sseqtrid |  |-  ( ph -> ( 1 ... ( N - 1 ) ) C_ ( 1 ... N ) ) | 
						
							| 166 | 165 | sselda |  |-  ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> k e. ( 1 ... N ) ) | 
						
							| 167 |  | bcm1k |  |-  ( k e. ( 1 ... N ) -> ( N _C k ) = ( ( N _C ( k - 1 ) ) x. ( ( N - ( k - 1 ) ) / k ) ) ) | 
						
							| 168 | 166 167 | syl |  |-  ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( N _C k ) = ( ( N _C ( k - 1 ) ) x. ( ( N - ( k - 1 ) ) / k ) ) ) | 
						
							| 169 | 1 | adantr |  |-  ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> N e. NN ) | 
						
							| 170 | 169 | nncnd |  |-  ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> N e. CC ) | 
						
							| 171 |  | elfznn |  |-  ( k e. ( 1 ... ( N - 1 ) ) -> k e. NN ) | 
						
							| 172 | 171 | adantl |  |-  ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> k e. NN ) | 
						
							| 173 | 172 | nncnd |  |-  ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> k e. CC ) | 
						
							| 174 |  | 1cnd |  |-  ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> 1 e. CC ) | 
						
							| 175 | 170 173 174 | subsubd |  |-  ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( N - ( k - 1 ) ) = ( ( N - k ) + 1 ) ) | 
						
							| 176 | 175 | oveq1d |  |-  ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( ( N - ( k - 1 ) ) / k ) = ( ( ( N - k ) + 1 ) / k ) ) | 
						
							| 177 | 176 | oveq2d |  |-  ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( ( N _C ( k - 1 ) ) x. ( ( N - ( k - 1 ) ) / k ) ) = ( ( N _C ( k - 1 ) ) x. ( ( ( N - k ) + 1 ) / k ) ) ) | 
						
							| 178 | 168 177 | eqtrd |  |-  ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( N _C k ) = ( ( N _C ( k - 1 ) ) x. ( ( ( N - k ) + 1 ) / k ) ) ) | 
						
							| 179 | 3 | oveq1d |  |-  ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( ( ( k BernPoly ( X + 1 ) ) - ( k BernPoly X ) ) / ( ( N - k ) + 1 ) ) = ( ( k x. ( X ^ ( k - 1 ) ) ) / ( ( N - k ) + 1 ) ) ) | 
						
							| 180 | 162 131 | sylbir |  |-  ( k e. ( 1 ... ( N - 1 ) ) -> k e. ( 0 ... ( N - 1 ) ) ) | 
						
							| 181 | 180 20 | sylan2 |  |-  ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( k BernPoly ( X + 1 ) ) e. CC ) | 
						
							| 182 | 180 40 | sylan2 |  |-  ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( k BernPoly X ) e. CC ) | 
						
							| 183 | 180 33 | sylan2 |  |-  ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( ( N - k ) + 1 ) e. CC ) | 
						
							| 184 | 180 34 | sylan2 |  |-  ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( ( N - k ) + 1 ) =/= 0 ) | 
						
							| 185 | 181 182 183 184 | divsubdird |  |-  ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( ( ( k BernPoly ( X + 1 ) ) - ( k BernPoly X ) ) / ( ( N - k ) + 1 ) ) = ( ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) - ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) | 
						
							| 186 | 2 | adantr |  |-  ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> X e. CC ) | 
						
							| 187 |  | nnm1nn0 |  |-  ( k e. NN -> ( k - 1 ) e. NN0 ) | 
						
							| 188 | 172 187 | syl |  |-  ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( k - 1 ) e. NN0 ) | 
						
							| 189 | 186 188 | expcld |  |-  ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( X ^ ( k - 1 ) ) e. CC ) | 
						
							| 190 | 173 189 183 184 | div23d |  |-  ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( ( k x. ( X ^ ( k - 1 ) ) ) / ( ( N - k ) + 1 ) ) = ( ( k / ( ( N - k ) + 1 ) ) x. ( X ^ ( k - 1 ) ) ) ) | 
						
							| 191 | 179 185 190 | 3eqtr3d |  |-  ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) - ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) = ( ( k / ( ( N - k ) + 1 ) ) x. ( X ^ ( k - 1 ) ) ) ) | 
						
							| 192 | 178 191 | oveq12d |  |-  ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( ( N _C k ) x. ( ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) - ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) = ( ( ( N _C ( k - 1 ) ) x. ( ( ( N - k ) + 1 ) / k ) ) x. ( ( k / ( ( N - k ) + 1 ) ) x. ( X ^ ( k - 1 ) ) ) ) ) | 
						
							| 193 | 180 17 | sylan2 |  |-  ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( N _C k ) e. CC ) | 
						
							| 194 | 181 183 184 | divcld |  |-  ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) e. CC ) | 
						
							| 195 | 182 183 184 | divcld |  |-  ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) e. CC ) | 
						
							| 196 | 193 194 195 | subdid |  |-  ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( ( N _C k ) x. ( ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) - ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) = ( ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) - ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) ) | 
						
							| 197 | 169 | nnnn0d |  |-  ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> N e. NN0 ) | 
						
							| 198 | 188 | nn0zd |  |-  ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( k - 1 ) e. ZZ ) | 
						
							| 199 |  | bccl |  |-  ( ( N e. NN0 /\ ( k - 1 ) e. ZZ ) -> ( N _C ( k - 1 ) ) e. NN0 ) | 
						
							| 200 | 197 198 199 | syl2anc |  |-  ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( N _C ( k - 1 ) ) e. NN0 ) | 
						
							| 201 | 200 | nn0cnd |  |-  ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( N _C ( k - 1 ) ) e. CC ) | 
						
							| 202 | 172 | nnne0d |  |-  ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> k =/= 0 ) | 
						
							| 203 | 183 173 202 | divcld |  |-  ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( ( ( N - k ) + 1 ) / k ) e. CC ) | 
						
							| 204 | 173 183 184 | divcld |  |-  ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( k / ( ( N - k ) + 1 ) ) e. CC ) | 
						
							| 205 | 204 189 | mulcld |  |-  ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( ( k / ( ( N - k ) + 1 ) ) x. ( X ^ ( k - 1 ) ) ) e. CC ) | 
						
							| 206 | 201 203 205 | mulassd |  |-  ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( ( ( N _C ( k - 1 ) ) x. ( ( ( N - k ) + 1 ) / k ) ) x. ( ( k / ( ( N - k ) + 1 ) ) x. ( X ^ ( k - 1 ) ) ) ) = ( ( N _C ( k - 1 ) ) x. ( ( ( ( N - k ) + 1 ) / k ) x. ( ( k / ( ( N - k ) + 1 ) ) x. ( X ^ ( k - 1 ) ) ) ) ) ) | 
						
							| 207 | 183 173 184 202 | divcan6d |  |-  ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( ( ( ( N - k ) + 1 ) / k ) x. ( k / ( ( N - k ) + 1 ) ) ) = 1 ) | 
						
							| 208 | 207 | oveq1d |  |-  ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( ( ( ( ( N - k ) + 1 ) / k ) x. ( k / ( ( N - k ) + 1 ) ) ) x. ( X ^ ( k - 1 ) ) ) = ( 1 x. ( X ^ ( k - 1 ) ) ) ) | 
						
							| 209 | 203 204 189 | mulassd |  |-  ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( ( ( ( ( N - k ) + 1 ) / k ) x. ( k / ( ( N - k ) + 1 ) ) ) x. ( X ^ ( k - 1 ) ) ) = ( ( ( ( N - k ) + 1 ) / k ) x. ( ( k / ( ( N - k ) + 1 ) ) x. ( X ^ ( k - 1 ) ) ) ) ) | 
						
							| 210 | 189 | mullidd |  |-  ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( 1 x. ( X ^ ( k - 1 ) ) ) = ( X ^ ( k - 1 ) ) ) | 
						
							| 211 | 208 209 210 | 3eqtr3d |  |-  ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( ( ( ( N - k ) + 1 ) / k ) x. ( ( k / ( ( N - k ) + 1 ) ) x. ( X ^ ( k - 1 ) ) ) ) = ( X ^ ( k - 1 ) ) ) | 
						
							| 212 | 211 | oveq2d |  |-  ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( ( N _C ( k - 1 ) ) x. ( ( ( ( N - k ) + 1 ) / k ) x. ( ( k / ( ( N - k ) + 1 ) ) x. ( X ^ ( k - 1 ) ) ) ) ) = ( ( N _C ( k - 1 ) ) x. ( X ^ ( k - 1 ) ) ) ) | 
						
							| 213 | 206 212 | eqtrd |  |-  ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( ( ( N _C ( k - 1 ) ) x. ( ( ( N - k ) + 1 ) / k ) ) x. ( ( k / ( ( N - k ) + 1 ) ) x. ( X ^ ( k - 1 ) ) ) ) = ( ( N _C ( k - 1 ) ) x. ( X ^ ( k - 1 ) ) ) ) | 
						
							| 214 | 192 196 213 | 3eqtr3d |  |-  ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) - ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) = ( ( N _C ( k - 1 ) ) x. ( X ^ ( k - 1 ) ) ) ) | 
						
							| 215 | 162 214 | sylan2b |  |-  ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ) -> ( ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) - ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) = ( ( N _C ( k - 1 ) ) x. ( X ^ ( k - 1 ) ) ) ) | 
						
							| 216 | 215 | sumeq2dv |  |-  ( ph -> sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) - ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) = sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( N _C ( k - 1 ) ) x. ( X ^ ( k - 1 ) ) ) ) | 
						
							| 217 | 128 132 134 | fsumsub |  |-  ( ph -> sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) - ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) = ( sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) - sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) ) | 
						
							| 218 | 159 216 217 | 3eqtr2rd |  |-  ( ph -> ( sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) - sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) = sum_ m e. ( 0 ... ( N - 2 ) ) ( ( N _C m ) x. ( X ^ m ) ) ) | 
						
							| 219 | 117 136 218 | 3eqtrd |  |-  ( ph -> ( sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) - sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) = sum_ m e. ( 0 ... ( N - 2 ) ) ( ( N _C m ) x. ( X ^ m ) ) ) | 
						
							| 220 | 93 219 | oveq12d |  |-  ( ph -> ( ( ( ( X + 1 ) ^ N ) - ( X ^ N ) ) - ( sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) - sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) ) = ( ( sum_ m e. ( 0 ... ( N - 2 ) ) ( ( N _C m ) x. ( X ^ m ) ) + ( N x. ( X ^ ( N - 1 ) ) ) ) - sum_ m e. ( 0 ... ( N - 2 ) ) ( ( N _C m ) x. ( X ^ m ) ) ) ) | 
						
							| 221 |  | fzfid |  |-  ( ph -> ( 0 ... ( N - 2 ) ) e. Fin ) | 
						
							| 222 | 221 152 | fsumcl |  |-  ( ph -> sum_ m e. ( 0 ... ( N - 2 ) ) ( ( N _C m ) x. ( X ^ m ) ) e. CC ) | 
						
							| 223 | 2 76 | expcld |  |-  ( ph -> ( X ^ ( N - 1 ) ) e. CC ) | 
						
							| 224 | 22 223 | mulcld |  |-  ( ph -> ( N x. ( X ^ ( N - 1 ) ) ) e. CC ) | 
						
							| 225 | 222 224 | pncan2d |  |-  ( ph -> ( ( sum_ m e. ( 0 ... ( N - 2 ) ) ( ( N _C m ) x. ( X ^ m ) ) + ( N x. ( X ^ ( N - 1 ) ) ) ) - sum_ m e. ( 0 ... ( N - 2 ) ) ( ( N _C m ) x. ( X ^ m ) ) ) = ( N x. ( X ^ ( N - 1 ) ) ) ) | 
						
							| 226 | 220 225 | eqtrd |  |-  ( ph -> ( ( ( ( X + 1 ) ^ N ) - ( X ^ N ) ) - ( sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) - sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) ) = ( N x. ( X ^ ( N - 1 ) ) ) ) | 
						
							| 227 | 11 44 226 | 3eqtrd |  |-  ( ph -> ( ( N BernPoly ( X + 1 ) ) - ( N BernPoly X ) ) = ( N x. ( X ^ ( N - 1 ) ) ) ) |