| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mpfind.cb |
|- B = ( Base ` S ) |
| 2 |
|
mpfind.cp |
|- .+ = ( +g ` S ) |
| 3 |
|
mpfind.ct |
|- .x. = ( .r ` S ) |
| 4 |
|
mpfind.cq |
|- Q = ran ( ( I evalSub S ) ` R ) |
| 5 |
|
mpfind.ad |
|- ( ( ph /\ ( ( f e. Q /\ ta ) /\ ( g e. Q /\ et ) ) ) -> ze ) |
| 6 |
|
mpfind.mu |
|- ( ( ph /\ ( ( f e. Q /\ ta ) /\ ( g e. Q /\ et ) ) ) -> si ) |
| 7 |
|
mpfind.wa |
|- ( x = ( ( B ^m I ) X. { f } ) -> ( ps <-> ch ) ) |
| 8 |
|
mpfind.wb |
|- ( x = ( g e. ( B ^m I ) |-> ( g ` f ) ) -> ( ps <-> th ) ) |
| 9 |
|
mpfind.wc |
|- ( x = f -> ( ps <-> ta ) ) |
| 10 |
|
mpfind.wd |
|- ( x = g -> ( ps <-> et ) ) |
| 11 |
|
mpfind.we |
|- ( x = ( f oF .+ g ) -> ( ps <-> ze ) ) |
| 12 |
|
mpfind.wf |
|- ( x = ( f oF .x. g ) -> ( ps <-> si ) ) |
| 13 |
|
mpfind.wg |
|- ( x = A -> ( ps <-> rh ) ) |
| 14 |
|
mpfind.co |
|- ( ( ph /\ f e. R ) -> ch ) |
| 15 |
|
mpfind.pr |
|- ( ( ph /\ f e. I ) -> th ) |
| 16 |
|
mpfind.a |
|- ( ph -> A e. Q ) |
| 17 |
16 4
|
eleqtrdi |
|- ( ph -> A e. ran ( ( I evalSub S ) ` R ) ) |
| 18 |
4
|
mpfrcl |
|- ( A e. Q -> ( I e. _V /\ S e. CRing /\ R e. ( SubRing ` S ) ) ) |
| 19 |
16 18
|
syl |
|- ( ph -> ( I e. _V /\ S e. CRing /\ R e. ( SubRing ` S ) ) ) |
| 20 |
|
eqid |
|- ( ( I evalSub S ) ` R ) = ( ( I evalSub S ) ` R ) |
| 21 |
|
eqid |
|- ( I mPoly ( S |`s R ) ) = ( I mPoly ( S |`s R ) ) |
| 22 |
|
eqid |
|- ( S |`s R ) = ( S |`s R ) |
| 23 |
|
eqid |
|- ( S ^s ( B ^m I ) ) = ( S ^s ( B ^m I ) ) |
| 24 |
20 21 22 23 1
|
evlsrhm |
|- ( ( I e. _V /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> ( ( I evalSub S ) ` R ) e. ( ( I mPoly ( S |`s R ) ) RingHom ( S ^s ( B ^m I ) ) ) ) |
| 25 |
|
eqid |
|- ( Base ` ( I mPoly ( S |`s R ) ) ) = ( Base ` ( I mPoly ( S |`s R ) ) ) |
| 26 |
|
eqid |
|- ( Base ` ( S ^s ( B ^m I ) ) ) = ( Base ` ( S ^s ( B ^m I ) ) ) |
| 27 |
25 26
|
rhmf |
|- ( ( ( I evalSub S ) ` R ) e. ( ( I mPoly ( S |`s R ) ) RingHom ( S ^s ( B ^m I ) ) ) -> ( ( I evalSub S ) ` R ) : ( Base ` ( I mPoly ( S |`s R ) ) ) --> ( Base ` ( S ^s ( B ^m I ) ) ) ) |
| 28 |
19 24 27
|
3syl |
|- ( ph -> ( ( I evalSub S ) ` R ) : ( Base ` ( I mPoly ( S |`s R ) ) ) --> ( Base ` ( S ^s ( B ^m I ) ) ) ) |
| 29 |
28
|
ffnd |
|- ( ph -> ( ( I evalSub S ) ` R ) Fn ( Base ` ( I mPoly ( S |`s R ) ) ) ) |
| 30 |
|
fvelrnb |
|- ( ( ( I evalSub S ) ` R ) Fn ( Base ` ( I mPoly ( S |`s R ) ) ) -> ( A e. ran ( ( I evalSub S ) ` R ) <-> E. y e. ( Base ` ( I mPoly ( S |`s R ) ) ) ( ( ( I evalSub S ) ` R ) ` y ) = A ) ) |
| 31 |
29 30
|
syl |
|- ( ph -> ( A e. ran ( ( I evalSub S ) ` R ) <-> E. y e. ( Base ` ( I mPoly ( S |`s R ) ) ) ( ( ( I evalSub S ) ` R ) ` y ) = A ) ) |
| 32 |
17 31
|
mpbid |
|- ( ph -> E. y e. ( Base ` ( I mPoly ( S |`s R ) ) ) ( ( ( I evalSub S ) ` R ) ` y ) = A ) |
| 33 |
28
|
ffund |
|- ( ph -> Fun ( ( I evalSub S ) ` R ) ) |
| 34 |
|
eqid |
|- ( Base ` ( S |`s R ) ) = ( Base ` ( S |`s R ) ) |
| 35 |
|
eqid |
|- ( I mVar ( S |`s R ) ) = ( I mVar ( S |`s R ) ) |
| 36 |
|
eqid |
|- ( +g ` ( I mPoly ( S |`s R ) ) ) = ( +g ` ( I mPoly ( S |`s R ) ) ) |
| 37 |
|
eqid |
|- ( .r ` ( I mPoly ( S |`s R ) ) ) = ( .r ` ( I mPoly ( S |`s R ) ) ) |
| 38 |
|
eqid |
|- ( algSc ` ( I mPoly ( S |`s R ) ) ) = ( algSc ` ( I mPoly ( S |`s R ) ) ) |
| 39 |
19
|
simp1d |
|- ( ph -> I e. _V ) |
| 40 |
19
|
simp2d |
|- ( ph -> S e. CRing ) |
| 41 |
19
|
simp3d |
|- ( ph -> R e. ( SubRing ` S ) ) |
| 42 |
22
|
subrgcrng |
|- ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> ( S |`s R ) e. CRing ) |
| 43 |
40 41 42
|
syl2anc |
|- ( ph -> ( S |`s R ) e. CRing ) |
| 44 |
|
crngring |
|- ( ( S |`s R ) e. CRing -> ( S |`s R ) e. Ring ) |
| 45 |
43 44
|
syl |
|- ( ph -> ( S |`s R ) e. Ring ) |
| 46 |
21 39 45
|
mplringd |
|- ( ph -> ( I mPoly ( S |`s R ) ) e. Ring ) |
| 47 |
46
|
adantr |
|- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( I mPoly ( S |`s R ) ) e. Ring ) |
| 48 |
|
simprl |
|- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) |
| 49 |
|
elpreima |
|- ( ( ( I evalSub S ) ` R ) Fn ( Base ` ( I mPoly ( S |`s R ) ) ) -> ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) <-> ( i e. ( Base ` ( I mPoly ( S |`s R ) ) ) /\ ( ( ( I evalSub S ) ` R ) ` i ) e. { x | ps } ) ) ) |
| 50 |
29 49
|
syl |
|- ( ph -> ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) <-> ( i e. ( Base ` ( I mPoly ( S |`s R ) ) ) /\ ( ( ( I evalSub S ) ` R ) ` i ) e. { x | ps } ) ) ) |
| 51 |
50
|
adantr |
|- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) <-> ( i e. ( Base ` ( I mPoly ( S |`s R ) ) ) /\ ( ( ( I evalSub S ) ` R ) ` i ) e. { x | ps } ) ) ) |
| 52 |
48 51
|
mpbid |
|- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( i e. ( Base ` ( I mPoly ( S |`s R ) ) ) /\ ( ( ( I evalSub S ) ` R ) ` i ) e. { x | ps } ) ) |
| 53 |
52
|
simpld |
|- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> i e. ( Base ` ( I mPoly ( S |`s R ) ) ) ) |
| 54 |
|
simprr |
|- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) |
| 55 |
|
elpreima |
|- ( ( ( I evalSub S ) ` R ) Fn ( Base ` ( I mPoly ( S |`s R ) ) ) -> ( j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) <-> ( j e. ( Base ` ( I mPoly ( S |`s R ) ) ) /\ ( ( ( I evalSub S ) ` R ) ` j ) e. { x | ps } ) ) ) |
| 56 |
29 55
|
syl |
|- ( ph -> ( j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) <-> ( j e. ( Base ` ( I mPoly ( S |`s R ) ) ) /\ ( ( ( I evalSub S ) ` R ) ` j ) e. { x | ps } ) ) ) |
| 57 |
56
|
adantr |
|- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) <-> ( j e. ( Base ` ( I mPoly ( S |`s R ) ) ) /\ ( ( ( I evalSub S ) ` R ) ` j ) e. { x | ps } ) ) ) |
| 58 |
54 57
|
mpbid |
|- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( j e. ( Base ` ( I mPoly ( S |`s R ) ) ) /\ ( ( ( I evalSub S ) ` R ) ` j ) e. { x | ps } ) ) |
| 59 |
58
|
simpld |
|- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> j e. ( Base ` ( I mPoly ( S |`s R ) ) ) ) |
| 60 |
25 36
|
ringacl |
|- ( ( ( I mPoly ( S |`s R ) ) e. Ring /\ i e. ( Base ` ( I mPoly ( S |`s R ) ) ) /\ j e. ( Base ` ( I mPoly ( S |`s R ) ) ) ) -> ( i ( +g ` ( I mPoly ( S |`s R ) ) ) j ) e. ( Base ` ( I mPoly ( S |`s R ) ) ) ) |
| 61 |
47 53 59 60
|
syl3anc |
|- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( i ( +g ` ( I mPoly ( S |`s R ) ) ) j ) e. ( Base ` ( I mPoly ( S |`s R ) ) ) ) |
| 62 |
|
rhmghm |
|- ( ( ( I evalSub S ) ` R ) e. ( ( I mPoly ( S |`s R ) ) RingHom ( S ^s ( B ^m I ) ) ) -> ( ( I evalSub S ) ` R ) e. ( ( I mPoly ( S |`s R ) ) GrpHom ( S ^s ( B ^m I ) ) ) ) |
| 63 |
19 24 62
|
3syl |
|- ( ph -> ( ( I evalSub S ) ` R ) e. ( ( I mPoly ( S |`s R ) ) GrpHom ( S ^s ( B ^m I ) ) ) ) |
| 64 |
63
|
adantr |
|- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( ( I evalSub S ) ` R ) e. ( ( I mPoly ( S |`s R ) ) GrpHom ( S ^s ( B ^m I ) ) ) ) |
| 65 |
|
eqid |
|- ( +g ` ( S ^s ( B ^m I ) ) ) = ( +g ` ( S ^s ( B ^m I ) ) ) |
| 66 |
25 36 65
|
ghmlin |
|- ( ( ( ( I evalSub S ) ` R ) e. ( ( I mPoly ( S |`s R ) ) GrpHom ( S ^s ( B ^m I ) ) ) /\ i e. ( Base ` ( I mPoly ( S |`s R ) ) ) /\ j e. ( Base ` ( I mPoly ( S |`s R ) ) ) ) -> ( ( ( I evalSub S ) ` R ) ` ( i ( +g ` ( I mPoly ( S |`s R ) ) ) j ) ) = ( ( ( ( I evalSub S ) ` R ) ` i ) ( +g ` ( S ^s ( B ^m I ) ) ) ( ( ( I evalSub S ) ` R ) ` j ) ) ) |
| 67 |
64 53 59 66
|
syl3anc |
|- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( ( ( I evalSub S ) ` R ) ` ( i ( +g ` ( I mPoly ( S |`s R ) ) ) j ) ) = ( ( ( ( I evalSub S ) ` R ) ` i ) ( +g ` ( S ^s ( B ^m I ) ) ) ( ( ( I evalSub S ) ` R ) ` j ) ) ) |
| 68 |
40
|
adantr |
|- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> S e. CRing ) |
| 69 |
|
ovexd |
|- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( B ^m I ) e. _V ) |
| 70 |
28
|
adantr |
|- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( ( I evalSub S ) ` R ) : ( Base ` ( I mPoly ( S |`s R ) ) ) --> ( Base ` ( S ^s ( B ^m I ) ) ) ) |
| 71 |
70 53
|
ffvelcdmd |
|- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( ( ( I evalSub S ) ` R ) ` i ) e. ( Base ` ( S ^s ( B ^m I ) ) ) ) |
| 72 |
70 59
|
ffvelcdmd |
|- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( ( ( I evalSub S ) ` R ) ` j ) e. ( Base ` ( S ^s ( B ^m I ) ) ) ) |
| 73 |
23 26 68 69 71 72 2 65
|
pwsplusgval |
|- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( ( ( ( I evalSub S ) ` R ) ` i ) ( +g ` ( S ^s ( B ^m I ) ) ) ( ( ( I evalSub S ) ` R ) ` j ) ) = ( ( ( ( I evalSub S ) ` R ) ` i ) oF .+ ( ( ( I evalSub S ) ` R ) ` j ) ) ) |
| 74 |
67 73
|
eqtrd |
|- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( ( ( I evalSub S ) ` R ) ` ( i ( +g ` ( I mPoly ( S |`s R ) ) ) j ) ) = ( ( ( ( I evalSub S ) ` R ) ` i ) oF .+ ( ( ( I evalSub S ) ` R ) ` j ) ) ) |
| 75 |
|
simpl |
|- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ph ) |
| 76 |
|
fnfvelrn |
|- ( ( ( ( I evalSub S ) ` R ) Fn ( Base ` ( I mPoly ( S |`s R ) ) ) /\ i e. ( Base ` ( I mPoly ( S |`s R ) ) ) ) -> ( ( ( I evalSub S ) ` R ) ` i ) e. ran ( ( I evalSub S ) ` R ) ) |
| 77 |
29 53 76
|
syl2an2r |
|- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( ( ( I evalSub S ) ` R ) ` i ) e. ran ( ( I evalSub S ) ` R ) ) |
| 78 |
77 4
|
eleqtrrdi |
|- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( ( ( I evalSub S ) ` R ) ` i ) e. Q ) |
| 79 |
|
fvimacnvi |
|- ( ( Fun ( ( I evalSub S ) ` R ) /\ i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) -> ( ( ( I evalSub S ) ` R ) ` i ) e. { x | ps } ) |
| 80 |
33 48 79
|
syl2an2r |
|- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( ( ( I evalSub S ) ` R ) ` i ) e. { x | ps } ) |
| 81 |
78 80
|
jca |
|- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( ( ( ( I evalSub S ) ` R ) ` i ) e. Q /\ ( ( ( I evalSub S ) ` R ) ` i ) e. { x | ps } ) ) |
| 82 |
|
fnfvelrn |
|- ( ( ( ( I evalSub S ) ` R ) Fn ( Base ` ( I mPoly ( S |`s R ) ) ) /\ j e. ( Base ` ( I mPoly ( S |`s R ) ) ) ) -> ( ( ( I evalSub S ) ` R ) ` j ) e. ran ( ( I evalSub S ) ` R ) ) |
| 83 |
29 59 82
|
syl2an2r |
|- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( ( ( I evalSub S ) ` R ) ` j ) e. ran ( ( I evalSub S ) ` R ) ) |
| 84 |
83 4
|
eleqtrrdi |
|- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( ( ( I evalSub S ) ` R ) ` j ) e. Q ) |
| 85 |
|
fvimacnvi |
|- ( ( Fun ( ( I evalSub S ) ` R ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) -> ( ( ( I evalSub S ) ` R ) ` j ) e. { x | ps } ) |
| 86 |
33 54 85
|
syl2an2r |
|- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( ( ( I evalSub S ) ` R ) ` j ) e. { x | ps } ) |
| 87 |
84 86
|
jca |
|- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( ( ( ( I evalSub S ) ` R ) ` j ) e. Q /\ ( ( ( I evalSub S ) ` R ) ` j ) e. { x | ps } ) ) |
| 88 |
|
fvex |
|- ( ( ( I evalSub S ) ` R ) ` i ) e. _V |
| 89 |
|
fvex |
|- ( ( ( I evalSub S ) ` R ) ` j ) e. _V |
| 90 |
|
eleq1 |
|- ( f = ( ( ( I evalSub S ) ` R ) ` i ) -> ( f e. Q <-> ( ( ( I evalSub S ) ` R ) ` i ) e. Q ) ) |
| 91 |
|
vex |
|- f e. _V |
| 92 |
91 9
|
elab |
|- ( f e. { x | ps } <-> ta ) |
| 93 |
|
eleq1 |
|- ( f = ( ( ( I evalSub S ) ` R ) ` i ) -> ( f e. { x | ps } <-> ( ( ( I evalSub S ) ` R ) ` i ) e. { x | ps } ) ) |
| 94 |
92 93
|
bitr3id |
|- ( f = ( ( ( I evalSub S ) ` R ) ` i ) -> ( ta <-> ( ( ( I evalSub S ) ` R ) ` i ) e. { x | ps } ) ) |
| 95 |
90 94
|
anbi12d |
|- ( f = ( ( ( I evalSub S ) ` R ) ` i ) -> ( ( f e. Q /\ ta ) <-> ( ( ( ( I evalSub S ) ` R ) ` i ) e. Q /\ ( ( ( I evalSub S ) ` R ) ` i ) e. { x | ps } ) ) ) |
| 96 |
|
eleq1 |
|- ( g = ( ( ( I evalSub S ) ` R ) ` j ) -> ( g e. Q <-> ( ( ( I evalSub S ) ` R ) ` j ) e. Q ) ) |
| 97 |
|
vex |
|- g e. _V |
| 98 |
97 10
|
elab |
|- ( g e. { x | ps } <-> et ) |
| 99 |
|
eleq1 |
|- ( g = ( ( ( I evalSub S ) ` R ) ` j ) -> ( g e. { x | ps } <-> ( ( ( I evalSub S ) ` R ) ` j ) e. { x | ps } ) ) |
| 100 |
98 99
|
bitr3id |
|- ( g = ( ( ( I evalSub S ) ` R ) ` j ) -> ( et <-> ( ( ( I evalSub S ) ` R ) ` j ) e. { x | ps } ) ) |
| 101 |
96 100
|
anbi12d |
|- ( g = ( ( ( I evalSub S ) ` R ) ` j ) -> ( ( g e. Q /\ et ) <-> ( ( ( ( I evalSub S ) ` R ) ` j ) e. Q /\ ( ( ( I evalSub S ) ` R ) ` j ) e. { x | ps } ) ) ) |
| 102 |
95 101
|
bi2anan9 |
|- ( ( f = ( ( ( I evalSub S ) ` R ) ` i ) /\ g = ( ( ( I evalSub S ) ` R ) ` j ) ) -> ( ( ( f e. Q /\ ta ) /\ ( g e. Q /\ et ) ) <-> ( ( ( ( ( I evalSub S ) ` R ) ` i ) e. Q /\ ( ( ( I evalSub S ) ` R ) ` i ) e. { x | ps } ) /\ ( ( ( ( I evalSub S ) ` R ) ` j ) e. Q /\ ( ( ( I evalSub S ) ` R ) ` j ) e. { x | ps } ) ) ) ) |
| 103 |
102
|
anbi2d |
|- ( ( f = ( ( ( I evalSub S ) ` R ) ` i ) /\ g = ( ( ( I evalSub S ) ` R ) ` j ) ) -> ( ( ph /\ ( ( f e. Q /\ ta ) /\ ( g e. Q /\ et ) ) ) <-> ( ph /\ ( ( ( ( ( I evalSub S ) ` R ) ` i ) e. Q /\ ( ( ( I evalSub S ) ` R ) ` i ) e. { x | ps } ) /\ ( ( ( ( I evalSub S ) ` R ) ` j ) e. Q /\ ( ( ( I evalSub S ) ` R ) ` j ) e. { x | ps } ) ) ) ) ) |
| 104 |
|
ovex |
|- ( f oF .+ g ) e. _V |
| 105 |
104 11
|
elab |
|- ( ( f oF .+ g ) e. { x | ps } <-> ze ) |
| 106 |
|
oveq12 |
|- ( ( f = ( ( ( I evalSub S ) ` R ) ` i ) /\ g = ( ( ( I evalSub S ) ` R ) ` j ) ) -> ( f oF .+ g ) = ( ( ( ( I evalSub S ) ` R ) ` i ) oF .+ ( ( ( I evalSub S ) ` R ) ` j ) ) ) |
| 107 |
106
|
eleq1d |
|- ( ( f = ( ( ( I evalSub S ) ` R ) ` i ) /\ g = ( ( ( I evalSub S ) ` R ) ` j ) ) -> ( ( f oF .+ g ) e. { x | ps } <-> ( ( ( ( I evalSub S ) ` R ) ` i ) oF .+ ( ( ( I evalSub S ) ` R ) ` j ) ) e. { x | ps } ) ) |
| 108 |
105 107
|
bitr3id |
|- ( ( f = ( ( ( I evalSub S ) ` R ) ` i ) /\ g = ( ( ( I evalSub S ) ` R ) ` j ) ) -> ( ze <-> ( ( ( ( I evalSub S ) ` R ) ` i ) oF .+ ( ( ( I evalSub S ) ` R ) ` j ) ) e. { x | ps } ) ) |
| 109 |
103 108
|
imbi12d |
|- ( ( f = ( ( ( I evalSub S ) ` R ) ` i ) /\ g = ( ( ( I evalSub S ) ` R ) ` j ) ) -> ( ( ( ph /\ ( ( f e. Q /\ ta ) /\ ( g e. Q /\ et ) ) ) -> ze ) <-> ( ( ph /\ ( ( ( ( ( I evalSub S ) ` R ) ` i ) e. Q /\ ( ( ( I evalSub S ) ` R ) ` i ) e. { x | ps } ) /\ ( ( ( ( I evalSub S ) ` R ) ` j ) e. Q /\ ( ( ( I evalSub S ) ` R ) ` j ) e. { x | ps } ) ) ) -> ( ( ( ( I evalSub S ) ` R ) ` i ) oF .+ ( ( ( I evalSub S ) ` R ) ` j ) ) e. { x | ps } ) ) ) |
| 110 |
88 89 109 5
|
vtocl2 |
|- ( ( ph /\ ( ( ( ( ( I evalSub S ) ` R ) ` i ) e. Q /\ ( ( ( I evalSub S ) ` R ) ` i ) e. { x | ps } ) /\ ( ( ( ( I evalSub S ) ` R ) ` j ) e. Q /\ ( ( ( I evalSub S ) ` R ) ` j ) e. { x | ps } ) ) ) -> ( ( ( ( I evalSub S ) ` R ) ` i ) oF .+ ( ( ( I evalSub S ) ` R ) ` j ) ) e. { x | ps } ) |
| 111 |
75 81 87 110
|
syl12anc |
|- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( ( ( ( I evalSub S ) ` R ) ` i ) oF .+ ( ( ( I evalSub S ) ` R ) ` j ) ) e. { x | ps } ) |
| 112 |
74 111
|
eqeltrd |
|- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( ( ( I evalSub S ) ` R ) ` ( i ( +g ` ( I mPoly ( S |`s R ) ) ) j ) ) e. { x | ps } ) |
| 113 |
|
elpreima |
|- ( ( ( I evalSub S ) ` R ) Fn ( Base ` ( I mPoly ( S |`s R ) ) ) -> ( ( i ( +g ` ( I mPoly ( S |`s R ) ) ) j ) e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) <-> ( ( i ( +g ` ( I mPoly ( S |`s R ) ) ) j ) e. ( Base ` ( I mPoly ( S |`s R ) ) ) /\ ( ( ( I evalSub S ) ` R ) ` ( i ( +g ` ( I mPoly ( S |`s R ) ) ) j ) ) e. { x | ps } ) ) ) |
| 114 |
29 113
|
syl |
|- ( ph -> ( ( i ( +g ` ( I mPoly ( S |`s R ) ) ) j ) e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) <-> ( ( i ( +g ` ( I mPoly ( S |`s R ) ) ) j ) e. ( Base ` ( I mPoly ( S |`s R ) ) ) /\ ( ( ( I evalSub S ) ` R ) ` ( i ( +g ` ( I mPoly ( S |`s R ) ) ) j ) ) e. { x | ps } ) ) ) |
| 115 |
114
|
adantr |
|- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( ( i ( +g ` ( I mPoly ( S |`s R ) ) ) j ) e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) <-> ( ( i ( +g ` ( I mPoly ( S |`s R ) ) ) j ) e. ( Base ` ( I mPoly ( S |`s R ) ) ) /\ ( ( ( I evalSub S ) ` R ) ` ( i ( +g ` ( I mPoly ( S |`s R ) ) ) j ) ) e. { x | ps } ) ) ) |
| 116 |
61 112 115
|
mpbir2and |
|- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( i ( +g ` ( I mPoly ( S |`s R ) ) ) j ) e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) |
| 117 |
116
|
adantlr |
|- ( ( ( ph /\ y e. ( Base ` ( I mPoly ( S |`s R ) ) ) ) /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( i ( +g ` ( I mPoly ( S |`s R ) ) ) j ) e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) |
| 118 |
25 37
|
ringcl |
|- ( ( ( I mPoly ( S |`s R ) ) e. Ring /\ i e. ( Base ` ( I mPoly ( S |`s R ) ) ) /\ j e. ( Base ` ( I mPoly ( S |`s R ) ) ) ) -> ( i ( .r ` ( I mPoly ( S |`s R ) ) ) j ) e. ( Base ` ( I mPoly ( S |`s R ) ) ) ) |
| 119 |
47 53 59 118
|
syl3anc |
|- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( i ( .r ` ( I mPoly ( S |`s R ) ) ) j ) e. ( Base ` ( I mPoly ( S |`s R ) ) ) ) |
| 120 |
|
eqid |
|- ( mulGrp ` ( I mPoly ( S |`s R ) ) ) = ( mulGrp ` ( I mPoly ( S |`s R ) ) ) |
| 121 |
|
eqid |
|- ( mulGrp ` ( S ^s ( B ^m I ) ) ) = ( mulGrp ` ( S ^s ( B ^m I ) ) ) |
| 122 |
120 121
|
rhmmhm |
|- ( ( ( I evalSub S ) ` R ) e. ( ( I mPoly ( S |`s R ) ) RingHom ( S ^s ( B ^m I ) ) ) -> ( ( I evalSub S ) ` R ) e. ( ( mulGrp ` ( I mPoly ( S |`s R ) ) ) MndHom ( mulGrp ` ( S ^s ( B ^m I ) ) ) ) ) |
| 123 |
19 24 122
|
3syl |
|- ( ph -> ( ( I evalSub S ) ` R ) e. ( ( mulGrp ` ( I mPoly ( S |`s R ) ) ) MndHom ( mulGrp ` ( S ^s ( B ^m I ) ) ) ) ) |
| 124 |
123
|
adantr |
|- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( ( I evalSub S ) ` R ) e. ( ( mulGrp ` ( I mPoly ( S |`s R ) ) ) MndHom ( mulGrp ` ( S ^s ( B ^m I ) ) ) ) ) |
| 125 |
120 25
|
mgpbas |
|- ( Base ` ( I mPoly ( S |`s R ) ) ) = ( Base ` ( mulGrp ` ( I mPoly ( S |`s R ) ) ) ) |
| 126 |
120 37
|
mgpplusg |
|- ( .r ` ( I mPoly ( S |`s R ) ) ) = ( +g ` ( mulGrp ` ( I mPoly ( S |`s R ) ) ) ) |
| 127 |
|
eqid |
|- ( .r ` ( S ^s ( B ^m I ) ) ) = ( .r ` ( S ^s ( B ^m I ) ) ) |
| 128 |
121 127
|
mgpplusg |
|- ( .r ` ( S ^s ( B ^m I ) ) ) = ( +g ` ( mulGrp ` ( S ^s ( B ^m I ) ) ) ) |
| 129 |
125 126 128
|
mhmlin |
|- ( ( ( ( I evalSub S ) ` R ) e. ( ( mulGrp ` ( I mPoly ( S |`s R ) ) ) MndHom ( mulGrp ` ( S ^s ( B ^m I ) ) ) ) /\ i e. ( Base ` ( I mPoly ( S |`s R ) ) ) /\ j e. ( Base ` ( I mPoly ( S |`s R ) ) ) ) -> ( ( ( I evalSub S ) ` R ) ` ( i ( .r ` ( I mPoly ( S |`s R ) ) ) j ) ) = ( ( ( ( I evalSub S ) ` R ) ` i ) ( .r ` ( S ^s ( B ^m I ) ) ) ( ( ( I evalSub S ) ` R ) ` j ) ) ) |
| 130 |
124 53 59 129
|
syl3anc |
|- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( ( ( I evalSub S ) ` R ) ` ( i ( .r ` ( I mPoly ( S |`s R ) ) ) j ) ) = ( ( ( ( I evalSub S ) ` R ) ` i ) ( .r ` ( S ^s ( B ^m I ) ) ) ( ( ( I evalSub S ) ` R ) ` j ) ) ) |
| 131 |
23 26 68 69 71 72 3 127
|
pwsmulrval |
|- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( ( ( ( I evalSub S ) ` R ) ` i ) ( .r ` ( S ^s ( B ^m I ) ) ) ( ( ( I evalSub S ) ` R ) ` j ) ) = ( ( ( ( I evalSub S ) ` R ) ` i ) oF .x. ( ( ( I evalSub S ) ` R ) ` j ) ) ) |
| 132 |
130 131
|
eqtrd |
|- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( ( ( I evalSub S ) ` R ) ` ( i ( .r ` ( I mPoly ( S |`s R ) ) ) j ) ) = ( ( ( ( I evalSub S ) ` R ) ` i ) oF .x. ( ( ( I evalSub S ) ` R ) ` j ) ) ) |
| 133 |
|
ovex |
|- ( f oF .x. g ) e. _V |
| 134 |
133 12
|
elab |
|- ( ( f oF .x. g ) e. { x | ps } <-> si ) |
| 135 |
|
oveq12 |
|- ( ( f = ( ( ( I evalSub S ) ` R ) ` i ) /\ g = ( ( ( I evalSub S ) ` R ) ` j ) ) -> ( f oF .x. g ) = ( ( ( ( I evalSub S ) ` R ) ` i ) oF .x. ( ( ( I evalSub S ) ` R ) ` j ) ) ) |
| 136 |
135
|
eleq1d |
|- ( ( f = ( ( ( I evalSub S ) ` R ) ` i ) /\ g = ( ( ( I evalSub S ) ` R ) ` j ) ) -> ( ( f oF .x. g ) e. { x | ps } <-> ( ( ( ( I evalSub S ) ` R ) ` i ) oF .x. ( ( ( I evalSub S ) ` R ) ` j ) ) e. { x | ps } ) ) |
| 137 |
134 136
|
bitr3id |
|- ( ( f = ( ( ( I evalSub S ) ` R ) ` i ) /\ g = ( ( ( I evalSub S ) ` R ) ` j ) ) -> ( si <-> ( ( ( ( I evalSub S ) ` R ) ` i ) oF .x. ( ( ( I evalSub S ) ` R ) ` j ) ) e. { x | ps } ) ) |
| 138 |
103 137
|
imbi12d |
|- ( ( f = ( ( ( I evalSub S ) ` R ) ` i ) /\ g = ( ( ( I evalSub S ) ` R ) ` j ) ) -> ( ( ( ph /\ ( ( f e. Q /\ ta ) /\ ( g e. Q /\ et ) ) ) -> si ) <-> ( ( ph /\ ( ( ( ( ( I evalSub S ) ` R ) ` i ) e. Q /\ ( ( ( I evalSub S ) ` R ) ` i ) e. { x | ps } ) /\ ( ( ( ( I evalSub S ) ` R ) ` j ) e. Q /\ ( ( ( I evalSub S ) ` R ) ` j ) e. { x | ps } ) ) ) -> ( ( ( ( I evalSub S ) ` R ) ` i ) oF .x. ( ( ( I evalSub S ) ` R ) ` j ) ) e. { x | ps } ) ) ) |
| 139 |
88 89 138 6
|
vtocl2 |
|- ( ( ph /\ ( ( ( ( ( I evalSub S ) ` R ) ` i ) e. Q /\ ( ( ( I evalSub S ) ` R ) ` i ) e. { x | ps } ) /\ ( ( ( ( I evalSub S ) ` R ) ` j ) e. Q /\ ( ( ( I evalSub S ) ` R ) ` j ) e. { x | ps } ) ) ) -> ( ( ( ( I evalSub S ) ` R ) ` i ) oF .x. ( ( ( I evalSub S ) ` R ) ` j ) ) e. { x | ps } ) |
| 140 |
75 81 87 139
|
syl12anc |
|- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( ( ( ( I evalSub S ) ` R ) ` i ) oF .x. ( ( ( I evalSub S ) ` R ) ` j ) ) e. { x | ps } ) |
| 141 |
132 140
|
eqeltrd |
|- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( ( ( I evalSub S ) ` R ) ` ( i ( .r ` ( I mPoly ( S |`s R ) ) ) j ) ) e. { x | ps } ) |
| 142 |
|
elpreima |
|- ( ( ( I evalSub S ) ` R ) Fn ( Base ` ( I mPoly ( S |`s R ) ) ) -> ( ( i ( .r ` ( I mPoly ( S |`s R ) ) ) j ) e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) <-> ( ( i ( .r ` ( I mPoly ( S |`s R ) ) ) j ) e. ( Base ` ( I mPoly ( S |`s R ) ) ) /\ ( ( ( I evalSub S ) ` R ) ` ( i ( .r ` ( I mPoly ( S |`s R ) ) ) j ) ) e. { x | ps } ) ) ) |
| 143 |
29 142
|
syl |
|- ( ph -> ( ( i ( .r ` ( I mPoly ( S |`s R ) ) ) j ) e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) <-> ( ( i ( .r ` ( I mPoly ( S |`s R ) ) ) j ) e. ( Base ` ( I mPoly ( S |`s R ) ) ) /\ ( ( ( I evalSub S ) ` R ) ` ( i ( .r ` ( I mPoly ( S |`s R ) ) ) j ) ) e. { x | ps } ) ) ) |
| 144 |
143
|
adantr |
|- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( ( i ( .r ` ( I mPoly ( S |`s R ) ) ) j ) e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) <-> ( ( i ( .r ` ( I mPoly ( S |`s R ) ) ) j ) e. ( Base ` ( I mPoly ( S |`s R ) ) ) /\ ( ( ( I evalSub S ) ` R ) ` ( i ( .r ` ( I mPoly ( S |`s R ) ) ) j ) ) e. { x | ps } ) ) ) |
| 145 |
119 141 144
|
mpbir2and |
|- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( i ( .r ` ( I mPoly ( S |`s R ) ) ) j ) e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) |
| 146 |
145
|
adantlr |
|- ( ( ( ph /\ y e. ( Base ` ( I mPoly ( S |`s R ) ) ) ) /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( i ( .r ` ( I mPoly ( S |`s R ) ) ) j ) e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) |
| 147 |
21
|
mplassa |
|- ( ( I e. _V /\ ( S |`s R ) e. CRing ) -> ( I mPoly ( S |`s R ) ) e. AssAlg ) |
| 148 |
39 43 147
|
syl2anc |
|- ( ph -> ( I mPoly ( S |`s R ) ) e. AssAlg ) |
| 149 |
|
eqid |
|- ( Scalar ` ( I mPoly ( S |`s R ) ) ) = ( Scalar ` ( I mPoly ( S |`s R ) ) ) |
| 150 |
38 149
|
asclrhm |
|- ( ( I mPoly ( S |`s R ) ) e. AssAlg -> ( algSc ` ( I mPoly ( S |`s R ) ) ) e. ( ( Scalar ` ( I mPoly ( S |`s R ) ) ) RingHom ( I mPoly ( S |`s R ) ) ) ) |
| 151 |
|
eqid |
|- ( Base ` ( Scalar ` ( I mPoly ( S |`s R ) ) ) ) = ( Base ` ( Scalar ` ( I mPoly ( S |`s R ) ) ) ) |
| 152 |
151 25
|
rhmf |
|- ( ( algSc ` ( I mPoly ( S |`s R ) ) ) e. ( ( Scalar ` ( I mPoly ( S |`s R ) ) ) RingHom ( I mPoly ( S |`s R ) ) ) -> ( algSc ` ( I mPoly ( S |`s R ) ) ) : ( Base ` ( Scalar ` ( I mPoly ( S |`s R ) ) ) ) --> ( Base ` ( I mPoly ( S |`s R ) ) ) ) |
| 153 |
148 150 152
|
3syl |
|- ( ph -> ( algSc ` ( I mPoly ( S |`s R ) ) ) : ( Base ` ( Scalar ` ( I mPoly ( S |`s R ) ) ) ) --> ( Base ` ( I mPoly ( S |`s R ) ) ) ) |
| 154 |
153
|
adantr |
|- ( ( ph /\ i e. ( Base ` ( S |`s R ) ) ) -> ( algSc ` ( I mPoly ( S |`s R ) ) ) : ( Base ` ( Scalar ` ( I mPoly ( S |`s R ) ) ) ) --> ( Base ` ( I mPoly ( S |`s R ) ) ) ) |
| 155 |
21 39 43
|
mplsca |
|- ( ph -> ( S |`s R ) = ( Scalar ` ( I mPoly ( S |`s R ) ) ) ) |
| 156 |
155
|
fveq2d |
|- ( ph -> ( Base ` ( S |`s R ) ) = ( Base ` ( Scalar ` ( I mPoly ( S |`s R ) ) ) ) ) |
| 157 |
156
|
eleq2d |
|- ( ph -> ( i e. ( Base ` ( S |`s R ) ) <-> i e. ( Base ` ( Scalar ` ( I mPoly ( S |`s R ) ) ) ) ) ) |
| 158 |
157
|
biimpa |
|- ( ( ph /\ i e. ( Base ` ( S |`s R ) ) ) -> i e. ( Base ` ( Scalar ` ( I mPoly ( S |`s R ) ) ) ) ) |
| 159 |
154 158
|
ffvelcdmd |
|- ( ( ph /\ i e. ( Base ` ( S |`s R ) ) ) -> ( ( algSc ` ( I mPoly ( S |`s R ) ) ) ` i ) e. ( Base ` ( I mPoly ( S |`s R ) ) ) ) |
| 160 |
39
|
adantr |
|- ( ( ph /\ i e. ( Base ` ( S |`s R ) ) ) -> I e. _V ) |
| 161 |
40
|
adantr |
|- ( ( ph /\ i e. ( Base ` ( S |`s R ) ) ) -> S e. CRing ) |
| 162 |
41
|
adantr |
|- ( ( ph /\ i e. ( Base ` ( S |`s R ) ) ) -> R e. ( SubRing ` S ) ) |
| 163 |
1
|
subrgss |
|- ( R e. ( SubRing ` S ) -> R C_ B ) |
| 164 |
22 1
|
ressbas2 |
|- ( R C_ B -> R = ( Base ` ( S |`s R ) ) ) |
| 165 |
41 163 164
|
3syl |
|- ( ph -> R = ( Base ` ( S |`s R ) ) ) |
| 166 |
165
|
eleq2d |
|- ( ph -> ( i e. R <-> i e. ( Base ` ( S |`s R ) ) ) ) |
| 167 |
166
|
biimpar |
|- ( ( ph /\ i e. ( Base ` ( S |`s R ) ) ) -> i e. R ) |
| 168 |
20 21 22 1 38 160 161 162 167
|
evlssca |
|- ( ( ph /\ i e. ( Base ` ( S |`s R ) ) ) -> ( ( ( I evalSub S ) ` R ) ` ( ( algSc ` ( I mPoly ( S |`s R ) ) ) ` i ) ) = ( ( B ^m I ) X. { i } ) ) |
| 169 |
14
|
ralrimiva |
|- ( ph -> A. f e. R ch ) |
| 170 |
|
ovex |
|- ( B ^m I ) e. _V |
| 171 |
|
vsnex |
|- { f } e. _V |
| 172 |
170 171
|
xpex |
|- ( ( B ^m I ) X. { f } ) e. _V |
| 173 |
172 7
|
elab |
|- ( ( ( B ^m I ) X. { f } ) e. { x | ps } <-> ch ) |
| 174 |
|
sneq |
|- ( f = i -> { f } = { i } ) |
| 175 |
174
|
xpeq2d |
|- ( f = i -> ( ( B ^m I ) X. { f } ) = ( ( B ^m I ) X. { i } ) ) |
| 176 |
175
|
eleq1d |
|- ( f = i -> ( ( ( B ^m I ) X. { f } ) e. { x | ps } <-> ( ( B ^m I ) X. { i } ) e. { x | ps } ) ) |
| 177 |
173 176
|
bitr3id |
|- ( f = i -> ( ch <-> ( ( B ^m I ) X. { i } ) e. { x | ps } ) ) |
| 178 |
177
|
cbvralvw |
|- ( A. f e. R ch <-> A. i e. R ( ( B ^m I ) X. { i } ) e. { x | ps } ) |
| 179 |
169 178
|
sylib |
|- ( ph -> A. i e. R ( ( B ^m I ) X. { i } ) e. { x | ps } ) |
| 180 |
179
|
r19.21bi |
|- ( ( ph /\ i e. R ) -> ( ( B ^m I ) X. { i } ) e. { x | ps } ) |
| 181 |
167 180
|
syldan |
|- ( ( ph /\ i e. ( Base ` ( S |`s R ) ) ) -> ( ( B ^m I ) X. { i } ) e. { x | ps } ) |
| 182 |
168 181
|
eqeltrd |
|- ( ( ph /\ i e. ( Base ` ( S |`s R ) ) ) -> ( ( ( I evalSub S ) ` R ) ` ( ( algSc ` ( I mPoly ( S |`s R ) ) ) ` i ) ) e. { x | ps } ) |
| 183 |
|
elpreima |
|- ( ( ( I evalSub S ) ` R ) Fn ( Base ` ( I mPoly ( S |`s R ) ) ) -> ( ( ( algSc ` ( I mPoly ( S |`s R ) ) ) ` i ) e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) <-> ( ( ( algSc ` ( I mPoly ( S |`s R ) ) ) ` i ) e. ( Base ` ( I mPoly ( S |`s R ) ) ) /\ ( ( ( I evalSub S ) ` R ) ` ( ( algSc ` ( I mPoly ( S |`s R ) ) ) ` i ) ) e. { x | ps } ) ) ) |
| 184 |
29 183
|
syl |
|- ( ph -> ( ( ( algSc ` ( I mPoly ( S |`s R ) ) ) ` i ) e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) <-> ( ( ( algSc ` ( I mPoly ( S |`s R ) ) ) ` i ) e. ( Base ` ( I mPoly ( S |`s R ) ) ) /\ ( ( ( I evalSub S ) ` R ) ` ( ( algSc ` ( I mPoly ( S |`s R ) ) ) ` i ) ) e. { x | ps } ) ) ) |
| 185 |
184
|
adantr |
|- ( ( ph /\ i e. ( Base ` ( S |`s R ) ) ) -> ( ( ( algSc ` ( I mPoly ( S |`s R ) ) ) ` i ) e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) <-> ( ( ( algSc ` ( I mPoly ( S |`s R ) ) ) ` i ) e. ( Base ` ( I mPoly ( S |`s R ) ) ) /\ ( ( ( I evalSub S ) ` R ) ` ( ( algSc ` ( I mPoly ( S |`s R ) ) ) ` i ) ) e. { x | ps } ) ) ) |
| 186 |
159 182 185
|
mpbir2and |
|- ( ( ph /\ i e. ( Base ` ( S |`s R ) ) ) -> ( ( algSc ` ( I mPoly ( S |`s R ) ) ) ` i ) e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) |
| 187 |
186
|
adantlr |
|- ( ( ( ph /\ y e. ( Base ` ( I mPoly ( S |`s R ) ) ) ) /\ i e. ( Base ` ( S |`s R ) ) ) -> ( ( algSc ` ( I mPoly ( S |`s R ) ) ) ` i ) e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) |
| 188 |
39
|
adantr |
|- ( ( ph /\ i e. I ) -> I e. _V ) |
| 189 |
45
|
adantr |
|- ( ( ph /\ i e. I ) -> ( S |`s R ) e. Ring ) |
| 190 |
|
simpr |
|- ( ( ph /\ i e. I ) -> i e. I ) |
| 191 |
21 35 25 188 189 190
|
mvrcl |
|- ( ( ph /\ i e. I ) -> ( ( I mVar ( S |`s R ) ) ` i ) e. ( Base ` ( I mPoly ( S |`s R ) ) ) ) |
| 192 |
40
|
adantr |
|- ( ( ph /\ i e. I ) -> S e. CRing ) |
| 193 |
41
|
adantr |
|- ( ( ph /\ i e. I ) -> R e. ( SubRing ` S ) ) |
| 194 |
20 35 22 1 188 192 193 190
|
evlsvar |
|- ( ( ph /\ i e. I ) -> ( ( ( I evalSub S ) ` R ) ` ( ( I mVar ( S |`s R ) ) ` i ) ) = ( g e. ( B ^m I ) |-> ( g ` i ) ) ) |
| 195 |
170
|
mptex |
|- ( g e. ( B ^m I ) |-> ( g ` f ) ) e. _V |
| 196 |
195 8
|
elab |
|- ( ( g e. ( B ^m I ) |-> ( g ` f ) ) e. { x | ps } <-> th ) |
| 197 |
15 196
|
sylibr |
|- ( ( ph /\ f e. I ) -> ( g e. ( B ^m I ) |-> ( g ` f ) ) e. { x | ps } ) |
| 198 |
197
|
ralrimiva |
|- ( ph -> A. f e. I ( g e. ( B ^m I ) |-> ( g ` f ) ) e. { x | ps } ) |
| 199 |
|
fveq2 |
|- ( f = i -> ( g ` f ) = ( g ` i ) ) |
| 200 |
199
|
mpteq2dv |
|- ( f = i -> ( g e. ( B ^m I ) |-> ( g ` f ) ) = ( g e. ( B ^m I ) |-> ( g ` i ) ) ) |
| 201 |
200
|
eleq1d |
|- ( f = i -> ( ( g e. ( B ^m I ) |-> ( g ` f ) ) e. { x | ps } <-> ( g e. ( B ^m I ) |-> ( g ` i ) ) e. { x | ps } ) ) |
| 202 |
201
|
cbvralvw |
|- ( A. f e. I ( g e. ( B ^m I ) |-> ( g ` f ) ) e. { x | ps } <-> A. i e. I ( g e. ( B ^m I ) |-> ( g ` i ) ) e. { x | ps } ) |
| 203 |
198 202
|
sylib |
|- ( ph -> A. i e. I ( g e. ( B ^m I ) |-> ( g ` i ) ) e. { x | ps } ) |
| 204 |
203
|
r19.21bi |
|- ( ( ph /\ i e. I ) -> ( g e. ( B ^m I ) |-> ( g ` i ) ) e. { x | ps } ) |
| 205 |
194 204
|
eqeltrd |
|- ( ( ph /\ i e. I ) -> ( ( ( I evalSub S ) ` R ) ` ( ( I mVar ( S |`s R ) ) ` i ) ) e. { x | ps } ) |
| 206 |
|
elpreima |
|- ( ( ( I evalSub S ) ` R ) Fn ( Base ` ( I mPoly ( S |`s R ) ) ) -> ( ( ( I mVar ( S |`s R ) ) ` i ) e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) <-> ( ( ( I mVar ( S |`s R ) ) ` i ) e. ( Base ` ( I mPoly ( S |`s R ) ) ) /\ ( ( ( I evalSub S ) ` R ) ` ( ( I mVar ( S |`s R ) ) ` i ) ) e. { x | ps } ) ) ) |
| 207 |
29 206
|
syl |
|- ( ph -> ( ( ( I mVar ( S |`s R ) ) ` i ) e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) <-> ( ( ( I mVar ( S |`s R ) ) ` i ) e. ( Base ` ( I mPoly ( S |`s R ) ) ) /\ ( ( ( I evalSub S ) ` R ) ` ( ( I mVar ( S |`s R ) ) ` i ) ) e. { x | ps } ) ) ) |
| 208 |
207
|
adantr |
|- ( ( ph /\ i e. I ) -> ( ( ( I mVar ( S |`s R ) ) ` i ) e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) <-> ( ( ( I mVar ( S |`s R ) ) ` i ) e. ( Base ` ( I mPoly ( S |`s R ) ) ) /\ ( ( ( I evalSub S ) ` R ) ` ( ( I mVar ( S |`s R ) ) ` i ) ) e. { x | ps } ) ) ) |
| 209 |
191 205 208
|
mpbir2and |
|- ( ( ph /\ i e. I ) -> ( ( I mVar ( S |`s R ) ) ` i ) e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) |
| 210 |
209
|
adantlr |
|- ( ( ( ph /\ y e. ( Base ` ( I mPoly ( S |`s R ) ) ) ) /\ i e. I ) -> ( ( I mVar ( S |`s R ) ) ` i ) e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) |
| 211 |
|
simpr |
|- ( ( ph /\ y e. ( Base ` ( I mPoly ( S |`s R ) ) ) ) -> y e. ( Base ` ( I mPoly ( S |`s R ) ) ) ) |
| 212 |
39
|
adantr |
|- ( ( ph /\ y e. ( Base ` ( I mPoly ( S |`s R ) ) ) ) -> I e. _V ) |
| 213 |
43
|
adantr |
|- ( ( ph /\ y e. ( Base ` ( I mPoly ( S |`s R ) ) ) ) -> ( S |`s R ) e. CRing ) |
| 214 |
34 35 21 36 37 38 25 117 146 187 210 211 212 213
|
mplind |
|- ( ( ph /\ y e. ( Base ` ( I mPoly ( S |`s R ) ) ) ) -> y e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) |
| 215 |
|
fvimacnvi |
|- ( ( Fun ( ( I evalSub S ) ` R ) /\ y e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) -> ( ( ( I evalSub S ) ` R ) ` y ) e. { x | ps } ) |
| 216 |
33 214 215
|
syl2an2r |
|- ( ( ph /\ y e. ( Base ` ( I mPoly ( S |`s R ) ) ) ) -> ( ( ( I evalSub S ) ` R ) ` y ) e. { x | ps } ) |
| 217 |
|
eleq1 |
|- ( ( ( ( I evalSub S ) ` R ) ` y ) = A -> ( ( ( ( I evalSub S ) ` R ) ` y ) e. { x | ps } <-> A e. { x | ps } ) ) |
| 218 |
216 217
|
syl5ibcom |
|- ( ( ph /\ y e. ( Base ` ( I mPoly ( S |`s R ) ) ) ) -> ( ( ( ( I evalSub S ) ` R ) ` y ) = A -> A e. { x | ps } ) ) |
| 219 |
218
|
rexlimdva |
|- ( ph -> ( E. y e. ( Base ` ( I mPoly ( S |`s R ) ) ) ( ( ( I evalSub S ) ` R ) ` y ) = A -> A e. { x | ps } ) ) |
| 220 |
32 219
|
mpd |
|- ( ph -> A e. { x | ps } ) |
| 221 |
13
|
elabg |
|- ( A e. Q -> ( A e. { x | ps } <-> rh ) ) |
| 222 |
16 221
|
syl |
|- ( ph -> ( A e. { x | ps } <-> rh ) ) |
| 223 |
220 222
|
mpbid |
|- ( ph -> rh ) |