| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rankon |
|- ( rank ` A ) e. On |
| 2 |
|
onzsl |
|- ( ( rank ` A ) e. On <-> ( ( rank ` A ) = (/) \/ E. x e. On ( rank ` A ) = suc x \/ ( ( rank ` A ) e. _V /\ Lim ( rank ` A ) ) ) ) |
| 3 |
1 2
|
mpbi |
|- ( ( rank ` A ) = (/) \/ E. x e. On ( rank ` A ) = suc x \/ ( ( rank ` A ) e. _V /\ Lim ( rank ` A ) ) ) |
| 4 |
|
sdom0 |
|- -. A ~< (/) |
| 5 |
|
fveq2 |
|- ( ( rank ` A ) = (/) -> ( cf ` ( rank ` A ) ) = ( cf ` (/) ) ) |
| 6 |
|
cf0 |
|- ( cf ` (/) ) = (/) |
| 7 |
5 6
|
eqtrdi |
|- ( ( rank ` A ) = (/) -> ( cf ` ( rank ` A ) ) = (/) ) |
| 8 |
7
|
breq2d |
|- ( ( rank ` A ) = (/) -> ( A ~< ( cf ` ( rank ` A ) ) <-> A ~< (/) ) ) |
| 9 |
4 8
|
mtbiri |
|- ( ( rank ` A ) = (/) -> -. A ~< ( cf ` ( rank ` A ) ) ) |
| 10 |
|
fveq2 |
|- ( ( rank ` A ) = suc x -> ( cf ` ( rank ` A ) ) = ( cf ` suc x ) ) |
| 11 |
|
cfsuc |
|- ( x e. On -> ( cf ` suc x ) = 1o ) |
| 12 |
10 11
|
sylan9eqr |
|- ( ( x e. On /\ ( rank ` A ) = suc x ) -> ( cf ` ( rank ` A ) ) = 1o ) |
| 13 |
|
nsuceq0 |
|- suc x =/= (/) |
| 14 |
|
neeq1 |
|- ( ( rank ` A ) = suc x -> ( ( rank ` A ) =/= (/) <-> suc x =/= (/) ) ) |
| 15 |
13 14
|
mpbiri |
|- ( ( rank ` A ) = suc x -> ( rank ` A ) =/= (/) ) |
| 16 |
|
fveq2 |
|- ( A = (/) -> ( rank ` A ) = ( rank ` (/) ) ) |
| 17 |
|
0elon |
|- (/) e. On |
| 18 |
|
r1fnon |
|- R1 Fn On |
| 19 |
18
|
fndmi |
|- dom R1 = On |
| 20 |
17 19
|
eleqtrri |
|- (/) e. dom R1 |
| 21 |
|
rankonid |
|- ( (/) e. dom R1 <-> ( rank ` (/) ) = (/) ) |
| 22 |
20 21
|
mpbi |
|- ( rank ` (/) ) = (/) |
| 23 |
16 22
|
eqtrdi |
|- ( A = (/) -> ( rank ` A ) = (/) ) |
| 24 |
23
|
necon3i |
|- ( ( rank ` A ) =/= (/) -> A =/= (/) ) |
| 25 |
|
rankvaln |
|- ( -. A e. U. ( R1 " On ) -> ( rank ` A ) = (/) ) |
| 26 |
25
|
necon1ai |
|- ( ( rank ` A ) =/= (/) -> A e. U. ( R1 " On ) ) |
| 27 |
|
breq2 |
|- ( y = A -> ( 1o ~<_ y <-> 1o ~<_ A ) ) |
| 28 |
|
neeq1 |
|- ( y = A -> ( y =/= (/) <-> A =/= (/) ) ) |
| 29 |
|
0sdom1dom |
|- ( (/) ~< y <-> 1o ~<_ y ) |
| 30 |
|
vex |
|- y e. _V |
| 31 |
30
|
0sdom |
|- ( (/) ~< y <-> y =/= (/) ) |
| 32 |
29 31
|
bitr3i |
|- ( 1o ~<_ y <-> y =/= (/) ) |
| 33 |
27 28 32
|
vtoclbg |
|- ( A e. U. ( R1 " On ) -> ( 1o ~<_ A <-> A =/= (/) ) ) |
| 34 |
26 33
|
syl |
|- ( ( rank ` A ) =/= (/) -> ( 1o ~<_ A <-> A =/= (/) ) ) |
| 35 |
24 34
|
mpbird |
|- ( ( rank ` A ) =/= (/) -> 1o ~<_ A ) |
| 36 |
15 35
|
syl |
|- ( ( rank ` A ) = suc x -> 1o ~<_ A ) |
| 37 |
36
|
adantl |
|- ( ( x e. On /\ ( rank ` A ) = suc x ) -> 1o ~<_ A ) |
| 38 |
12 37
|
eqbrtrd |
|- ( ( x e. On /\ ( rank ` A ) = suc x ) -> ( cf ` ( rank ` A ) ) ~<_ A ) |
| 39 |
38
|
rexlimiva |
|- ( E. x e. On ( rank ` A ) = suc x -> ( cf ` ( rank ` A ) ) ~<_ A ) |
| 40 |
|
domnsym |
|- ( ( cf ` ( rank ` A ) ) ~<_ A -> -. A ~< ( cf ` ( rank ` A ) ) ) |
| 41 |
39 40
|
syl |
|- ( E. x e. On ( rank ` A ) = suc x -> -. A ~< ( cf ` ( rank ` A ) ) ) |
| 42 |
|
nlim0 |
|- -. Lim (/) |
| 43 |
|
limeq |
|- ( ( rank ` A ) = (/) -> ( Lim ( rank ` A ) <-> Lim (/) ) ) |
| 44 |
42 43
|
mtbiri |
|- ( ( rank ` A ) = (/) -> -. Lim ( rank ` A ) ) |
| 45 |
25 44
|
syl |
|- ( -. A e. U. ( R1 " On ) -> -. Lim ( rank ` A ) ) |
| 46 |
45
|
con4i |
|- ( Lim ( rank ` A ) -> A e. U. ( R1 " On ) ) |
| 47 |
|
r1elssi |
|- ( A e. U. ( R1 " On ) -> A C_ U. ( R1 " On ) ) |
| 48 |
46 47
|
syl |
|- ( Lim ( rank ` A ) -> A C_ U. ( R1 " On ) ) |
| 49 |
48
|
sselda |
|- ( ( Lim ( rank ` A ) /\ x e. A ) -> x e. U. ( R1 " On ) ) |
| 50 |
|
ranksnb |
|- ( x e. U. ( R1 " On ) -> ( rank ` { x } ) = suc ( rank ` x ) ) |
| 51 |
49 50
|
syl |
|- ( ( Lim ( rank ` A ) /\ x e. A ) -> ( rank ` { x } ) = suc ( rank ` x ) ) |
| 52 |
|
rankelb |
|- ( A e. U. ( R1 " On ) -> ( x e. A -> ( rank ` x ) e. ( rank ` A ) ) ) |
| 53 |
46 52
|
syl |
|- ( Lim ( rank ` A ) -> ( x e. A -> ( rank ` x ) e. ( rank ` A ) ) ) |
| 54 |
|
limsuc |
|- ( Lim ( rank ` A ) -> ( ( rank ` x ) e. ( rank ` A ) <-> suc ( rank ` x ) e. ( rank ` A ) ) ) |
| 55 |
53 54
|
sylibd |
|- ( Lim ( rank ` A ) -> ( x e. A -> suc ( rank ` x ) e. ( rank ` A ) ) ) |
| 56 |
55
|
imp |
|- ( ( Lim ( rank ` A ) /\ x e. A ) -> suc ( rank ` x ) e. ( rank ` A ) ) |
| 57 |
51 56
|
eqeltrd |
|- ( ( Lim ( rank ` A ) /\ x e. A ) -> ( rank ` { x } ) e. ( rank ` A ) ) |
| 58 |
|
eleq1a |
|- ( ( rank ` { x } ) e. ( rank ` A ) -> ( w = ( rank ` { x } ) -> w e. ( rank ` A ) ) ) |
| 59 |
57 58
|
syl |
|- ( ( Lim ( rank ` A ) /\ x e. A ) -> ( w = ( rank ` { x } ) -> w e. ( rank ` A ) ) ) |
| 60 |
59
|
rexlimdva |
|- ( Lim ( rank ` A ) -> ( E. x e. A w = ( rank ` { x } ) -> w e. ( rank ` A ) ) ) |
| 61 |
60
|
abssdv |
|- ( Lim ( rank ` A ) -> { w | E. x e. A w = ( rank ` { x } ) } C_ ( rank ` A ) ) |
| 62 |
|
vsnex |
|- { x } e. _V |
| 63 |
62
|
dfiun2 |
|- U_ x e. A { x } = U. { y | E. x e. A y = { x } } |
| 64 |
|
iunid |
|- U_ x e. A { x } = A |
| 65 |
63 64
|
eqtr3i |
|- U. { y | E. x e. A y = { x } } = A |
| 66 |
65
|
fveq2i |
|- ( rank ` U. { y | E. x e. A y = { x } } ) = ( rank ` A ) |
| 67 |
47
|
sselda |
|- ( ( A e. U. ( R1 " On ) /\ x e. A ) -> x e. U. ( R1 " On ) ) |
| 68 |
|
snwf |
|- ( x e. U. ( R1 " On ) -> { x } e. U. ( R1 " On ) ) |
| 69 |
|
eleq1a |
|- ( { x } e. U. ( R1 " On ) -> ( y = { x } -> y e. U. ( R1 " On ) ) ) |
| 70 |
67 68 69
|
3syl |
|- ( ( A e. U. ( R1 " On ) /\ x e. A ) -> ( y = { x } -> y e. U. ( R1 " On ) ) ) |
| 71 |
70
|
rexlimdva |
|- ( A e. U. ( R1 " On ) -> ( E. x e. A y = { x } -> y e. U. ( R1 " On ) ) ) |
| 72 |
71
|
abssdv |
|- ( A e. U. ( R1 " On ) -> { y | E. x e. A y = { x } } C_ U. ( R1 " On ) ) |
| 73 |
|
abrexexg |
|- ( A e. U. ( R1 " On ) -> { y | E. x e. A y = { x } } e. _V ) |
| 74 |
|
eleq1 |
|- ( z = { y | E. x e. A y = { x } } -> ( z e. U. ( R1 " On ) <-> { y | E. x e. A y = { x } } e. U. ( R1 " On ) ) ) |
| 75 |
|
sseq1 |
|- ( z = { y | E. x e. A y = { x } } -> ( z C_ U. ( R1 " On ) <-> { y | E. x e. A y = { x } } C_ U. ( R1 " On ) ) ) |
| 76 |
|
vex |
|- z e. _V |
| 77 |
76
|
r1elss |
|- ( z e. U. ( R1 " On ) <-> z C_ U. ( R1 " On ) ) |
| 78 |
74 75 77
|
vtoclbg |
|- ( { y | E. x e. A y = { x } } e. _V -> ( { y | E. x e. A y = { x } } e. U. ( R1 " On ) <-> { y | E. x e. A y = { x } } C_ U. ( R1 " On ) ) ) |
| 79 |
73 78
|
syl |
|- ( A e. U. ( R1 " On ) -> ( { y | E. x e. A y = { x } } e. U. ( R1 " On ) <-> { y | E. x e. A y = { x } } C_ U. ( R1 " On ) ) ) |
| 80 |
72 79
|
mpbird |
|- ( A e. U. ( R1 " On ) -> { y | E. x e. A y = { x } } e. U. ( R1 " On ) ) |
| 81 |
|
rankuni2b |
|- ( { y | E. x e. A y = { x } } e. U. ( R1 " On ) -> ( rank ` U. { y | E. x e. A y = { x } } ) = U_ z e. { y | E. x e. A y = { x } } ( rank ` z ) ) |
| 82 |
80 81
|
syl |
|- ( A e. U. ( R1 " On ) -> ( rank ` U. { y | E. x e. A y = { x } } ) = U_ z e. { y | E. x e. A y = { x } } ( rank ` z ) ) |
| 83 |
66 82
|
eqtr3id |
|- ( A e. U. ( R1 " On ) -> ( rank ` A ) = U_ z e. { y | E. x e. A y = { x } } ( rank ` z ) ) |
| 84 |
|
fvex |
|- ( rank ` z ) e. _V |
| 85 |
84
|
dfiun2 |
|- U_ z e. { y | E. x e. A y = { x } } ( rank ` z ) = U. { w | E. z e. { y | E. x e. A y = { x } } w = ( rank ` z ) } |
| 86 |
|
fveq2 |
|- ( z = { x } -> ( rank ` z ) = ( rank ` { x } ) ) |
| 87 |
62 86
|
abrexco |
|- { w | E. z e. { y | E. x e. A y = { x } } w = ( rank ` z ) } = { w | E. x e. A w = ( rank ` { x } ) } |
| 88 |
87
|
unieqi |
|- U. { w | E. z e. { y | E. x e. A y = { x } } w = ( rank ` z ) } = U. { w | E. x e. A w = ( rank ` { x } ) } |
| 89 |
85 88
|
eqtri |
|- U_ z e. { y | E. x e. A y = { x } } ( rank ` z ) = U. { w | E. x e. A w = ( rank ` { x } ) } |
| 90 |
83 89
|
eqtr2di |
|- ( A e. U. ( R1 " On ) -> U. { w | E. x e. A w = ( rank ` { x } ) } = ( rank ` A ) ) |
| 91 |
46 90
|
syl |
|- ( Lim ( rank ` A ) -> U. { w | E. x e. A w = ( rank ` { x } ) } = ( rank ` A ) ) |
| 92 |
|
fvex |
|- ( rank ` A ) e. _V |
| 93 |
92
|
cfslb |
|- ( ( Lim ( rank ` A ) /\ { w | E. x e. A w = ( rank ` { x } ) } C_ ( rank ` A ) /\ U. { w | E. x e. A w = ( rank ` { x } ) } = ( rank ` A ) ) -> ( cf ` ( rank ` A ) ) ~<_ { w | E. x e. A w = ( rank ` { x } ) } ) |
| 94 |
61 91 93
|
mpd3an23 |
|- ( Lim ( rank ` A ) -> ( cf ` ( rank ` A ) ) ~<_ { w | E. x e. A w = ( rank ` { x } ) } ) |
| 95 |
|
2fveq3 |
|- ( y = A -> ( cf ` ( rank ` y ) ) = ( cf ` ( rank ` A ) ) ) |
| 96 |
|
breq12 |
|- ( ( y = A /\ ( cf ` ( rank ` y ) ) = ( cf ` ( rank ` A ) ) ) -> ( y ~< ( cf ` ( rank ` y ) ) <-> A ~< ( cf ` ( rank ` A ) ) ) ) |
| 97 |
95 96
|
mpdan |
|- ( y = A -> ( y ~< ( cf ` ( rank ` y ) ) <-> A ~< ( cf ` ( rank ` A ) ) ) ) |
| 98 |
|
rexeq |
|- ( y = A -> ( E. x e. y w = ( rank ` { x } ) <-> E. x e. A w = ( rank ` { x } ) ) ) |
| 99 |
98
|
abbidv |
|- ( y = A -> { w | E. x e. y w = ( rank ` { x } ) } = { w | E. x e. A w = ( rank ` { x } ) } ) |
| 100 |
|
breq12 |
|- ( ( { w | E. x e. y w = ( rank ` { x } ) } = { w | E. x e. A w = ( rank ` { x } ) } /\ y = A ) -> ( { w | E. x e. y w = ( rank ` { x } ) } ~<_ y <-> { w | E. x e. A w = ( rank ` { x } ) } ~<_ A ) ) |
| 101 |
99 100
|
mpancom |
|- ( y = A -> ( { w | E. x e. y w = ( rank ` { x } ) } ~<_ y <-> { w | E. x e. A w = ( rank ` { x } ) } ~<_ A ) ) |
| 102 |
97 101
|
imbi12d |
|- ( y = A -> ( ( y ~< ( cf ` ( rank ` y ) ) -> { w | E. x e. y w = ( rank ` { x } ) } ~<_ y ) <-> ( A ~< ( cf ` ( rank ` A ) ) -> { w | E. x e. A w = ( rank ` { x } ) } ~<_ A ) ) ) |
| 103 |
|
eqid |
|- ( x e. y |-> ( rank ` { x } ) ) = ( x e. y |-> ( rank ` { x } ) ) |
| 104 |
103
|
rnmpt |
|- ran ( x e. y |-> ( rank ` { x } ) ) = { w | E. x e. y w = ( rank ` { x } ) } |
| 105 |
|
cfon |
|- ( cf ` ( rank ` y ) ) e. On |
| 106 |
|
sdomdom |
|- ( y ~< ( cf ` ( rank ` y ) ) -> y ~<_ ( cf ` ( rank ` y ) ) ) |
| 107 |
|
ondomen |
|- ( ( ( cf ` ( rank ` y ) ) e. On /\ y ~<_ ( cf ` ( rank ` y ) ) ) -> y e. dom card ) |
| 108 |
105 106 107
|
sylancr |
|- ( y ~< ( cf ` ( rank ` y ) ) -> y e. dom card ) |
| 109 |
|
fvex |
|- ( rank ` { x } ) e. _V |
| 110 |
109 103
|
fnmpti |
|- ( x e. y |-> ( rank ` { x } ) ) Fn y |
| 111 |
|
dffn4 |
|- ( ( x e. y |-> ( rank ` { x } ) ) Fn y <-> ( x e. y |-> ( rank ` { x } ) ) : y -onto-> ran ( x e. y |-> ( rank ` { x } ) ) ) |
| 112 |
110 111
|
mpbi |
|- ( x e. y |-> ( rank ` { x } ) ) : y -onto-> ran ( x e. y |-> ( rank ` { x } ) ) |
| 113 |
|
fodomnum |
|- ( y e. dom card -> ( ( x e. y |-> ( rank ` { x } ) ) : y -onto-> ran ( x e. y |-> ( rank ` { x } ) ) -> ran ( x e. y |-> ( rank ` { x } ) ) ~<_ y ) ) |
| 114 |
108 112 113
|
mpisyl |
|- ( y ~< ( cf ` ( rank ` y ) ) -> ran ( x e. y |-> ( rank ` { x } ) ) ~<_ y ) |
| 115 |
104 114
|
eqbrtrrid |
|- ( y ~< ( cf ` ( rank ` y ) ) -> { w | E. x e. y w = ( rank ` { x } ) } ~<_ y ) |
| 116 |
102 115
|
vtoclg |
|- ( A e. U. ( R1 " On ) -> ( A ~< ( cf ` ( rank ` A ) ) -> { w | E. x e. A w = ( rank ` { x } ) } ~<_ A ) ) |
| 117 |
46 116
|
syl |
|- ( Lim ( rank ` A ) -> ( A ~< ( cf ` ( rank ` A ) ) -> { w | E. x e. A w = ( rank ` { x } ) } ~<_ A ) ) |
| 118 |
|
domtr |
|- ( ( ( cf ` ( rank ` A ) ) ~<_ { w | E. x e. A w = ( rank ` { x } ) } /\ { w | E. x e. A w = ( rank ` { x } ) } ~<_ A ) -> ( cf ` ( rank ` A ) ) ~<_ A ) |
| 119 |
118 40
|
syl |
|- ( ( ( cf ` ( rank ` A ) ) ~<_ { w | E. x e. A w = ( rank ` { x } ) } /\ { w | E. x e. A w = ( rank ` { x } ) } ~<_ A ) -> -. A ~< ( cf ` ( rank ` A ) ) ) |
| 120 |
94 117 119
|
syl6an |
|- ( Lim ( rank ` A ) -> ( A ~< ( cf ` ( rank ` A ) ) -> -. A ~< ( cf ` ( rank ` A ) ) ) ) |
| 121 |
120
|
pm2.01d |
|- ( Lim ( rank ` A ) -> -. A ~< ( cf ` ( rank ` A ) ) ) |
| 122 |
121
|
adantl |
|- ( ( ( rank ` A ) e. _V /\ Lim ( rank ` A ) ) -> -. A ~< ( cf ` ( rank ` A ) ) ) |
| 123 |
9 41 122
|
3jaoi |
|- ( ( ( rank ` A ) = (/) \/ E. x e. On ( rank ` A ) = suc x \/ ( ( rank ` A ) e. _V /\ Lim ( rank ` A ) ) ) -> -. A ~< ( cf ` ( rank ` A ) ) ) |
| 124 |
3 123
|
ax-mp |
|- -. A ~< ( cf ` ( rank ` A ) ) |