Metamath Proof Explorer


Theorem 1mavmul

Description: Multiplication of the identity NxN matrix with an N-dimensional vector results in the vector itself. (Contributed by AV, 9-Feb-2019) (Revised by AV, 23-Feb-2019)

Ref Expression
Hypotheses 1mavmul.a A=NMatR
1mavmul.b B=BaseR
1mavmul.t ·˙=RmaVecMulNN
1mavmul.r φRRing
1mavmul.n φNFin
1mavmul.y φYBN
Assertion 1mavmul φ1A·˙Y=Y

Proof

Step Hyp Ref Expression
1 1mavmul.a A=NMatR
2 1mavmul.b B=BaseR
3 1mavmul.t ·˙=RmaVecMulNN
4 1mavmul.r φRRing
5 1mavmul.n φNFin
6 1mavmul.y φYBN
7 eqid R=R
8 eqid BaseA=BaseA
9 1 fveq2i 1A=1NMatR
10 1 8 9 mat1bas RRingNFin1ABaseA
11 4 5 10 syl2anc φ1ABaseA
12 1 3 2 7 4 5 11 6 mavmulval φ1A·˙Y=iNRjNi1AjRYj
13 eqid 1R=1R
14 eqid 0R=0R
15 1 13 14 mat1 NFinRRing1A=xN,yNifx=y1R0R
16 5 4 15 syl2anc φ1A=xN,yNifx=y1R0R
17 16 oveqdr φiNi1Aj=ixN,yNifx=y1R0Rj
18 17 oveq1d φiNi1AjRYj=ixN,yNifx=y1R0RjRYj
19 18 mpteq2dv φiNjNi1AjRYj=jNixN,yNifx=y1R0RjRYj
20 19 oveq2d φiNRjNi1AjRYj=RjNixN,yNifx=y1R0RjRYj
21 eqidd φiNjNxN,yNifx=y1R0R=xN,yNifx=y1R0R
22 eqeq12 x=iy=jx=yi=j
23 22 ifbid x=iy=jifx=y1R0R=ifi=j1R0R
24 23 adantl φiNjNx=iy=jifx=y1R0R=ifi=j1R0R
25 simpr φiNiN
26 25 adantr φiNjNiN
27 simpr φiNjNjN
28 fvexd φiNjN1RV
29 fvexd φiNjN0RV
30 28 29 ifcld φiNjNifi=j1R0RV
31 21 24 26 27 30 ovmpod φiNjNixN,yNifx=y1R0Rj=ifi=j1R0R
32 31 oveq1d φiNjNixN,yNifx=y1R0RjRYj=ifi=j1R0RRYj
33 iftrue i=jifi=j1R0R=1R
34 33 adantr i=jφiNjNifi=j1R0R=1R
35 34 oveq1d i=jφiNjNifi=j1R0RRYj=1RRYj
36 4 adantr φiNRRing
37 36 adantr φiNjNRRing
38 2 fvexi BV
39 38 a1i φBV
40 39 5 elmapd φYBNY:NB
41 ffvelcdm Y:NBjNYjB
42 41 ex Y:NBjNYjB
43 40 42 syl6bi φYBNjNYjB
44 6 43 mpd φjNYjB
45 44 adantr φiNjNYjB
46 45 imp φiNjNYjB
47 2 7 13 ringlidm RRingYjB1RRYj=Yj
48 37 46 47 syl2anc φiNjN1RRYj=Yj
49 48 adantl i=jφiNjN1RRYj=Yj
50 fveq2 j=iYj=Yi
51 50 equcoms i=jYj=Yi
52 51 adantr i=jφiNjNYj=Yi
53 35 49 52 3eqtrd i=jφiNjNifi=j1R0RRYj=Yi
54 iftrue j=iifj=iYi0R=Yi
55 54 equcoms i=jifj=iYi0R=Yi
56 55 adantr i=jφiNjNifj=iYi0R=Yi
57 53 56 eqtr4d i=jφiNjNifi=j1R0RRYj=ifj=iYi0R
58 iffalse ¬i=jifi=j1R0R=0R
59 58 oveq1d ¬i=jifi=j1R0RRYj=0RRYj
60 59 adantr ¬i=jφiNjNifi=j1R0RRYj=0RRYj
61 2 7 14 ringlz RRingYjB0RRYj=0R
62 37 46 61 syl2anc φiNjN0RRYj=0R
63 62 adantl ¬i=jφiNjN0RRYj=0R
64 eqcom i=jj=i
65 iffalse ¬j=iifj=iYi0R=0R
66 64 65 sylnbi ¬i=jifj=iYi0R=0R
67 66 eqcomd ¬i=j0R=ifj=iYi0R
68 67 adantr ¬i=jφiNjN0R=ifj=iYi0R
69 60 63 68 3eqtrd ¬i=jφiNjNifi=j1R0RRYj=ifj=iYi0R
70 57 69 pm2.61ian φiNjNifi=j1R0RRYj=ifj=iYi0R
71 32 70 eqtrd φiNjNixN,yNifx=y1R0RjRYj=ifj=iYi0R
72 71 mpteq2dva φiNjNixN,yNifx=y1R0RjRYj=jNifj=iYi0R
73 72 oveq2d φiNRjNixN,yNifx=y1R0RjRYj=RjNifj=iYi0R
74 ringmnd RRingRMnd
75 4 74 syl φRMnd
76 75 adantr φiNRMnd
77 5 adantr φiNNFin
78 eqid jNifj=iYi0R=jNifj=iYi0R
79 ffvelcdm Y:NBiNYiB
80 79 2 eleqtrdi Y:NBiNYiBaseR
81 80 ex Y:NBiNYiBaseR
82 40 81 syl6bi φYBNiNYiBaseR
83 6 82 mpd φiNYiBaseR
84 83 imp φiNYiBaseR
85 14 76 77 25 78 84 gsummptif1n0 φiNRjNifj=iYi0R=Yi
86 20 73 85 3eqtrd φiNRjNi1AjRYj=Yi
87 86 mpteq2dva φiNRjNi1AjRYj=iNYi
88 ffn Y:NBYFnN
89 40 88 syl6bi φYBNYFnN
90 6 89 mpd φYFnN
91 eqcom iNYi=YY=iNYi
92 dffn5 YFnNY=iNYi
93 91 92 bitr4i iNYi=YYFnN
94 90 93 sylibr φiNYi=Y
95 12 87 94 3eqtrd φ1A·˙Y=Y