Description: A second-countable space is first-countable. (Contributed by Jeff Hankins, 17-Jan-2010)
Ref | Expression | ||
---|---|---|---|
Assertion | 2ndc1stc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ndctop | |
|
2 | is2ndc | |
|
3 | ssrab2 | |
|
4 | bastg | |
|
5 | 4 | 3ad2ant1 | |
6 | 3 5 | sstrid | |
7 | fvex | |
|
8 | 7 | elpw2 | |
9 | 6 8 | sylibr | |
10 | vex | |
|
11 | ssdomg | |
|
12 | 10 3 11 | mp2 | |
13 | simp2 | |
|
14 | domtr | |
|
15 | 12 13 14 | sylancr | |
16 | eltg2b | |
|
17 | 16 | 3ad2ant1 | |
18 | elequ1 | |
|
19 | 18 | anbi1d | |
20 | 19 | rexbidv | |
21 | 20 | rspccv | |
22 | id | |
|
23 | 22 | adantrr | |
24 | elequ2 | |
|
25 | 24 | elrab | |
26 | 23 25 | sylibr | |
27 | simprr | |
|
28 | elequ2 | |
|
29 | sseq1 | |
|
30 | 28 29 | anbi12d | |
31 | 30 | rspcev | |
32 | 26 27 31 | syl2an2 | |
33 | 32 | rexlimdvaa | |
34 | 21 33 | syl9r | |
35 | 17 34 | sylbid | |
36 | 35 | ralrimiv | |
37 | breq1 | |
|
38 | rexeq | |
|
39 | 38 | imbi2d | |
40 | 39 | ralbidv | |
41 | 37 40 | anbi12d | |
42 | 41 | rspcev | |
43 | 9 15 36 42 | syl12anc | |
44 | 43 | 3expia | |
45 | unieq | |
|
46 | 45 | eleq2d | |
47 | pweq | |
|
48 | raleq | |
|
49 | 48 | anbi2d | |
50 | 47 49 | rexeqbidv | |
51 | 46 50 | imbi12d | |
52 | 44 51 | syl5ibcom | |
53 | 52 | expimpd | |
54 | 53 | rexlimiv | |
55 | 2 54 | sylbi | |
56 | 55 | ralrimiv | |
57 | eqid | |
|
58 | 57 | is1stc2 | |
59 | 1 56 58 | sylanbrc | |